TMSCl mediated highly efficient one-pot synthesis of octahydroquinazolinone and 1,8-dioxo-octahydroxanthene derivatives

Srinivas Kantevari,* Rajashaker Bantu, and Lingaiah Nagarapu

Organic Chemistry Division-II, Indian Institute of Chemical Technology, Uppal Road, Hyderabad-500007, India E-mail: <u>Kantevari@yahoo.com</u>

Abstract

A simple, efficient and cost-effective method for the synthesis of octahydroquinazolinone and *1,8*-dioxo-octahydroxanthene derivatives by a one-pot cyclocondensation of dimedone and aldehydes, with and without urea or thiourea respectively in the presence of Trimethylsilyl chloride (TMSCl) in MeCN/DMF has been described.

Keywords: Octahydroquinazolinone, trimethylsilyl chloride, *1,8*-dioxo-octahydro xanthene, cyclocondensation, one pot multi-component synthesis

Introduction

Octahydroquinazolinone derivatives have attracted considerable attention in recent years owing to their potential antibacterial activity against *Staphylococcus aureus, Escherichiacoli, pseudomonas aeruginosa*¹, and also as a calcium antagonist². Methods employed for their synthesis are the variant classical one pot multi-component Biginelli reaction involving dimedone, aromatic aldehydes and urea³. Although various Lewis acid catalysts are employed^{1,3,4a-c} in the extension of the Biginelli reaction, they are expensive, harmful and are difficult to handle especially on large scale. Most of these procedures are sluggish, require longer reaction times, use strongly acidic conditions, give unsatisfactory yields and also suffer from the formation of many side products ^{4a}.

In continuation of our work on the use of silica-supported reagents⁵, TMSCl has attracted our interest. Among the various silicon-based acidic reagents, TMSCl has received considerable attention as an inexpensive and readily available reagent for various organic transformations⁶. Advantages such as its compatibility with many synthetically valuable nucleophiles (e.g., organometalic reagents, and cuprates) and its non-aggregation nature substantially simplify the analysis of the reaction mechanisms. Because of this, it has been extensively used as a protecting

group for various functional groups such as hydroxy and amino group^{6a,7} and as a promoter for cycloadddition and conjugate addition reactions^{6a} under mild and convenient conditions to offer the products in excellent yield and high selectivity. However, to the best of our knowledge, there is no report on the synthesis of octahydroquinazolinone using TMSCl as a reagent. In this communication, we report a TMSCl mediated simple, efficient and environmentally benign synthesis of octahydroquinazolinone (Schemes 1 & 2). During our study we also observed the formation of 1,8-dioxo-octahydroxanthene in excellent yields by one-pot Knoevenagel condensation, Michael addition and cyclodehydration of dimedone with various aldehydes in the presence of TMSCl (Scheme 3).

Scheme 1

Scheme 2

Scheme 3

Initially, a pilot reaction was attempted using benzaldehyde (1), dimedone (2) and urea (3) in the presence of TMSCI (0.5 equiv) with out any solvent (Scheme-I). After 3 hours only 27% of octahydroquinazolinone product was isolated. Increasing the amount of TMSCl (1.5 equiv) did not improve the product yield to a considerable amount. Subsequently, we investigated the effect of different solvents on the reaction rate and as well as yields of the products (Table 1). In protic solvents such as MeOH or EtOH, the reaction was very slow and resulted in lower product yield. Similar results were obtained in coordinating solvents such as THF, diethyl ether and dimethy ether. On the other hand, conducting the reactions in chlorinated solvents such as dichloromethane and chloroform improved both the reaction rates as well as product yields. After screening for different solvents, acetonitrile / DMF (6.0 ml + 1.5 ml) came out as the solvent of choice, which not only afforded the products in good yield, but also with higher reaction rates (95% yield in 1.5 h). It is also noticed that the condensation using TMSCl proceeds rapidly and is superior to the reported procedures^{1,3,4a-c} with respect to reaction time, temperature and yield. This claim is justified through the representative examples, illustrated in Table- 2, in which the efficiency of TMSCl has been compared with those of recently reported supported Lewis / protic acid catalysts (Table 2).

Entry ^a	Solvent	Time (h)	Yield (%) ^b
1	Neat	3	27
2	Methanol	5	36
3	Ethanol	4	42
4	THF	3	45
5	Et_2O	4	49
6	DME	3	52
7	CH_2Cl_2	2	63
8	CHCl ₃	2	65
9	CH ₃ CN / DMF	1.5	95

Table 1. Effect of solvents in the condensation dimedone, benzaldehyde and urea in the presence of TMSCl

^a All reactions were performed using benzaldehyde (10 mmol), urea (15 mmol), thiourea (15 mmol), dimedone (10 mmol) and TMSCl (20 mmol) in CH₃CN/DMF(4:1 ratio). ^b Isolated vields.

S.No	Reagent	Solvent	Temp (°C)	Time (h)	Yield (%) 4a	Ref
1	Conc.H ₂ SO ₄	Ethanol	80	9.0	-	4a
2	Conc.H ₂ SO ₄	H_2O	RT	3.0	85	3
3	HClO ₄ -SiO ₂ (50	CH ₃ CN	Reflux	6.0	54	-
	mg, 0.025 mmol)					
4	Conc. HCl	Ethanol	Reflux	6.5	-	4b
5	Acid Alumina	Neat	Reflux	6.0	-	1
6	VCl ₃	CH ₃ CN	Reflux	2.0	67-92	4c
7	TMSCl	CH ₃ CN	Reflux	5.0	15	-
8	TMSCl	CH ₃ CN/DMF	Reflux	1.5	95	-

Table 2. Synthesis of octahydroquinazolinone 4a using different reagents and reaction conditions

In order to evaluate the generality of the process, several diversified examples illustrating the present method for the synthesis of octahydroquinazolinone 4 was studied (Scheme 2, Table 3). The reaction of dimedone 2 with various aromatic aldehydes 1 bearing electron withdrawing groups (such as nitro, halide) or electron releasing groups (such as N,N-dimethylamino, methyl, hydroxyl; mono, di, or tri methoxy groups), and urea or thiourea 3 was carried out in the presence of TMSCI. The yields obtained were good to excellent without formation of any side products such as 1,8-dioxo-Octahydroxanthenes, which are normally observed under the influence of strong acids^{4a}. The reaction of aromatic aldehydes having electron-withdrawing groups reacted very well at faster rate compared with aromatics aldehydes substituted with electron releasing groups, unlike those of urea, the reactions of thiourea proceeded at lower rate less efficiently to give octahydroquinazolinone (entry 1 and 15, 2 and 16). The results obtained in the current method are illustrated in Table 3. All the products obtained were fully characterized by spectroscopic methods such as IR, ¹H NMR, ¹³C NMR and mass spectroscopy and also by comparison with the reported ^{2a, 4a} spectral data. The simplicity, together with the use of inexpensive, non-toxic and environmentally benign nature of TMSCl under CH₃CN/DMF solvent is a remarkable feature of the procedure.

Encouraged by these results we were delighted to observe that the present protocol could safely be extended to the condensation reaction involving equimolar quantity of aldehyde 1, dimedone 2. *1-8*-dioxo-octahydroxanthenes were obtained in excellent yields (Scheme 3, Table 4) with out the formation of any side products.

Entry	R	Х	Produc	Time	Yield	Мр	(⁰ C)) Ref.
			t ^b	(h)	% ^{a,c}	Found	Reported	
1	C_6H_5	0	4a	1.5	95.0	292-295	290-291	2a
2	3-Cl C ₆ H ₄	0	4b	2.0	91.8	281-282	282-283	2a
3	4-Cl C ₆ H ₄	0	4c	2.0	94.1	>300	>300	2a, 12
4	$2,4-Cl_2C_6H_3$	0	4d	2.0	82.5	268-270	-	-
5	$4\text{-BrC}_6\text{H}_4$	0	4e	1.5	93.2	>300	>300	2a
6	$4-MeC_6H_4$	0	4f	2.0	87.3	>300	>300	4a
7	NMe ₂ C ₆ H ₄	0	4g	2.0	80.7	231-232	-	-
8	3-OMeC ₆ H ₄	0	4h	1.5	86.2	247-248	247-248	4a
9	3,4,5-(OCH ₃) ₃ C ₆ H ₂	0	4i	2.0	80.5	139-140	-	-
10	(CH ₃) ₂ CH	0	4j	1.5	75.8	>300	-	-
11	4-Pyridyl	0	4k	2.0	71.2	>300	-	-
12	$4-NO_2C_6H_4$	0	41	1.5	84.6	304-305	-	-
13	3-NO ₂ C ₆ H ₄	0	4m	1.5	78.8	299-300	300-301	4a
14	$4-OHC_6H_4$	0	4n	2.5	71.7	300-302	-	-
15	C_6H_5	S	40	2.5	76.0	284-285	-	-
16	3-ClC ₆ H ₄	S	4p	2.5	71.6	275-276	275-276	2a
17	$4-BrC_6H_4$	S	4q	2.5	78.4	285-286	-	-
18	4-OMeC ₆ H ₄	S	4r	2.5	82.0	272-275	-	-
19	3-OMeC ₆ H ₄	S	4s	3.0	77.5	270-272	-	-
20	$4-MeC_6H_4$	S	4t	2.5	81.8	273-275	-	-
21	4-NMe ₂ C ₆ H ₄	S	4u	3.0	70.0	275-276	-	

Table 3. TMSCI-Mediated synthesis of various octahydroquinazolinone

^a All reactions were performed at 10mmol scale using 20mmol of TMSCl in CH_3CN/DMF (6ml / 1.5ml-) at reflux temperature (80°C)

^b All the products were well characterized by ¹H NMR, IR and Mass spectral data.

^c Isolated yields.

Trimethylsilyl chloride showed remarkable reactivity as a "hard-soft" reagent and considerably accelerated the reactions. On the basis of all our experimental results, together with literature reports^{6,10}, we have proposed the plausible mechanism¹³ for the formation of octahydroquinazolinone **4** in the presence of TMSCl (Scheme 4). The reaction is believed to precede through the formation of an N-acyliminium ion intermediate **7** from the urea or thiourea and aldehyde **1** precursor in the presence of TMSCl, leading to the formation of octahydroquinazolinone **4**.

Entry	Ar	Product ^b	Time (h)	Temp (⁰ C)	Yield ^c	Mp (⁰ C)		Ref.
					(%)	Found	Reported	-
1	C_6H_5	5a	8	Reflux	84.1	201-203	202-204	11
2	$4-Cl C_6H_4$	5b	8	Reflux	81.0	230-232	228-230	11
3	$2,4-Cl_2C_6H_3$	5c	8	Reflux	74.3	254-255	253-254	11
4	4-Br C ₆ H ₄	5d	10	Reflux	79.2	240-242	-	-
5	3-OMeC ₆ H ₄	5e	10	Reflux	71.9	160-162	-	-

Table 4. TMSCI-Mediated synthesis of various 1,8-dioxo-octahydroxanthenes^a

^a All reactions were performed at 10mmol scale using 20mmol of TMSCl in CH₃CN (5ml)

^b All the products were well characterized by ¹H NMR, IR and Mass spectral data.

^c Isolated yields

Scheme 4. Plausible mechanism for the formation of Octahydroquinazolinone 4.

In conclusion, a series of octahydroquinazolinone and 1-8-dioxo-octahydroxanthenes were synthesized efficiently by the condensation of aldehydes 1, dimedone 2 and urea or thiourea 3 respectively in the presence of TMSCl (20 mmol) in CH₃CN/DMF conditions. The current protocol was also applied successfully for the synthesis of 1,8-dioxo-octahydroxanthenes from aromatic aldehyde and dimedone. The method has ability to tolerate structurally and electronically divergent substituents in aldehydes; variable reaction conditions, shorter reaction times and simple work-up procedure are other advantages. Further, the present procedure is

readily amenable to large-scale synthesis and the generation of combinatorial octahydroquinazolinones and *1*,8-dioxo-octahydroxanthenes.

Experimental Section

General Procedures. All the commercial reagents and solvents were used without further purification unless otherwise stated. Melting points were recorded on Buchi 535 melting point apparatus and are uncorrected. All the reactions were monitored by thin layer chromatography performed on precoated silica gel 60F₂₅₄ plates (Merck). Compounds were visualized with UV light at 254nm and 365nm, iodine and heating plates after dipping in 2% phosphomolybdic acid in 15% aq. H₂SO₄ solution. NMR spectra were recorded on Varian Unity-400 MHz and BRUKER AMX 300 MHz spectrometers using tetra methyl silane as an internal standard. ¹³C NMR was recorded on Varian Unity 100 MHz using CDCl₃ as internal standard. Mass spectra were recorded on a VG Micromass 7070H and Finnigan Mat 1020B mass spectrometers operating at 70ev.

Typical procedure for the synthesis of octahydroquinazolinone

A solution of benzaldehyde **1a** (10 mmol), dimedone **2a** (10 mmol) and urea or thiourea (15mmol), and MeCN/DMF (6ml/1.5ml) containing TMSCl (20 mmol) was refluxed (80°C) till the reaction was completed (monitored by TLC). The solid product **4a** obtained was filtered through a Buchner funnel, washed with MeCN (3x 5 ml) and dried. The compound was recrystallized in ethanol to give pure crystalline product.

The representative spectral data of octahydroquinazolinone derivatives **4a-4u** are given below.

7,7-Dimethyl-4-phenyl-4,6,7,8-tetrahydro-1*H,3H***-quinazoline-2,5-dione (4a).** Mp 292-295 0 C, (Lit^{2a} mp 290-291 0 C); IR (KBr) v_{max} 3317(br), 3258(br), 2961(br), 1709(s), 1673(s), 1608(vs), 1445(w), 1371(s), 1230(s), 761(s), 692(w), 562(w), 486(w), 427(w) cm⁻¹. ¹H NMR (300MHz, CDCl₃ + DMSO-d₆), δ 0.97(s, 3H, CMe); 1.10(s, 3H, CMe); 2.18 (q, *J*=16.1Hz, 2H, CH₂); 2.39(q, *J*=16.8Hz, 2H, CH₂); 5.27 (d, *J*=2.8Hz,1H, CH); 7.32-7.21 (m, 5H, Ar); 7.45(s, 1H, NH); 9.38(s, 1H, NH); MS (ESI) m/z 271 ([M+H])⁺; Anal. Calcd for C₁₆ H₁₈ N₂ O₂: C, 71.09; H, 6.71, N, 10.36. Found: C, 71.16, H, 6.69; N 10.33.

4-(3-Chloro-phenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H,3H***-quinazoline-2,5-dione (4b).** Mp 281-282 0 C, (Lit^{2a} mp 282-283 0 C); IR (KBr) v_{max} 3248(br), 2955(br), 1700(vs), 1618(vs), 1471(sh), 1376(s), 1236(s), 1048(w), 804(w), 724(br), 563(s), 508(s) cm⁻¹,¹H NMR (400MHz,CDCl₃+DMSO-d₆), δ 0.96(s, 3H, CMe); 1.09(s, 3H, CMe); 2.18 (q, *J*=16.5Hz, 2H, CH₂); 2.39(q, *J*=18.0Hz, 2H, CH₂); 5.23 (d, *J*=2.8Hz,1H, CH); 7.17-7.28 (m, 4H, Ar); 7.66(s, 1H, NH); 9.44(s, 1H, NH); MS (ESI) m/z 305 ([M+H])^{+ ·} Anal. Calcd for C₁₆ H₁₇ Cl N₂ O₂: C, 63.05; H, 5.62, N, 9.19. Found: C, 63.11, H, 5.62; N 9.23.

4-(4-Chloro-phenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H***,3***H***-quinazoline-2,5-dione (4c).** Mp >300 0 C (Lit^{2a} mp >300 0 C) ; IR (KBr) v_{max} 3249(br), 2961(br), 1699(vs), 1612(vs), 1488(s),

1375(s), 1238(s), 809(w), 763(w), 566(s), 509(w) cm⁻¹; ¹H NMR (400MHz,CDCl₃+DMSO-d₆), δ 0.96(s, 3H, CMe); 1.09(s, 3H, CMe); 2.19(q, *J*=17.5Hz, 2H, CH₂); 2.37(q, *J*=17.5Hz, 2H, CH₂); 5.31 (d, *J*=2.9Hz, 1H, CH); 7.19-7.30 (m, 4H, Ar); 7.54(s, 1H, NH); 9.36(s, 1H, NH); MS (ESI) m/z 305 ([M+H])⁺; Anal. Calcd for C₁₆ H₁₇ Cl N₂ O₂: C, 63.05; H, 5.62, N, 9.19. Found: C, 63.11, H, 5.61; N 9.20.

4-(2,4-Dichloro-phenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H,3H*-quinazoline-2,5-dione (4d). Mp 268-270 0 C; IR (KBr) v_{max} 3325(br), 3103(br), 2956(br), 1701(vs), 1627(vs), 1450(m), 1375(s), 1236(s), 862(m), 755(w), 521(w), 464(w), 417 cm⁻¹; ¹H NMR (400MHz,CDCl₃ + DMSO-d₆), δ 0.99(s, 3H, CMe); 1.04(s, 3H, CMe); 2.10(q, *J*=16.1Hz, 2H, CH₂); 2.35(q, *J*=17.6Hz, 2H, CH₂); 5.57(d, *J*=2.9Hz, 1H, CH); 7.08-7.19 (m, 3H, Ar); 7.28(s, 1H, NH); 9.45(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 192.9 (<u>C</u>=O), 153.3 (N<u>C</u>=O), 151.0 (N<u>C</u>=C), 140.2, 132.9, 132.5, 131.0, 128.9, 127.5 (Ar<u>C</u>), 105.4 (OC-<u>C</u>=C), 50.6 (<u>C</u>-NH), 49.8 (<u>C</u>H₂), 32.2 (><u>C</u><, <u>C</u>H₂), 28.6, 27.1 (<u>C</u>H₃); MS (ESI) m/z 340 ([M+H])⁺; Anal. Calcd for C₁₆ H₁₆ Cl₂ N₂ O₂: C, 56.63; H, 4.75, N, 8.26. Found: C, 56.63, H, 4.74; N 8.26.

4-(4-Bromo-phenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H***,3***H***-quinazoline-2,5-dione (4e). Mp >300 ^{0}C (Lit^{2a} mp >300 ^{0}C); IR (KBr) v_{max} 3249(br), 2961(br), 1708(s), 1612(vs), 1488(sh), 1375(s), 1231(s), 1011(s), 840(w), 762(br), 562(w), 491(w) cm⁻¹; ¹H NMR (400MHz,CDCl₃+DMSO-d₆), \delta 0.95(s, 3H, CMe); 1.08(s, 3H, CMe); 2.16(q,** *J***=16.3Hz, 2H, CH₂); 2.37(q,** *J***=17.8Hz, 2H, CH₂); 5.22(d,** *J***=2.9Hz, 1H, CH); 7.21-7.39 (m, 4H, Ar); 7.56(s, 1H, NH); 9.41(s, 1H, NH); MS (ESI) m/z 350 ([M+H])⁺; Anal. Calcd for C₁₆ H₁₇ Br N₂ O₂: C, 55.03; H, 4.91, N, 8.02. Found: C, 55.10, H, 4.99; N 8.02.**

7,7-Dimethyl-4*p***-tolyl-4***,***6,7,8-tetrahydro-1***H***, 3H-quinazoline-2**,**5-dione (4f).** Mp. >300 0 C,(Lit^{4a} mp >300 0 C); IR (KBr) ν_{max} 3252(br), 2960(br), 1711(s), 1673(vs), 1613(vs), 1420(w), 1374(s), 1233(s), 1045(w), 760(br), 563(w) cm^{-1.1}H NMR (500MHz,CDCl₃ + DMSO-d₆), δ 0.97(s, 3H, CMe); 1.09(s, 3H, CMe); 2.16(q, *J*=16.3Hz, 2H, CH₂); 2.37(q, *J*=17.9Hz, 2H, CH₂); 2.30(s, 1H, CH₃), 5.22(d, *J*=1.8Hz, 1H, CH); 7.04-7.18 (m, 4H, Ar); 7.29(s, 1H, NH); 9.28(s, 1H, NH); MS (ESI) m/z 285 ([M+H])^{+.} Anal. Calcd for C₁₇ H₂₀ N₂ O₂: C, 71.81; H, 7.09, N, 9.85; Found: C, 71.82, H, 7.11; N 9.84.

4-(4-Dimethylamino-phenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H*,3*H*-quinazoline-2,5-dione (**4g**). Mp. 231-232 0 C; IR (KBr) ν_{max} 3343(br), 3231(br), 2958(br), 1638(m), 1615(vs), 1461(sh), 1375(s), 1242(s), 1191(m), 1146(w), 567 cm⁻¹; ^{1H} NMR (400MHz,CDCl₃ + DMSO-d₆), δ 0.98(s, 3H, CMe); 1.09(s, 3H, CMe); 2.18(q, *J*=16.1Hz, 2H, CH₂); 2.38(q, *J*=16.8Hz, 2H, CH₂); 2.54(s, 6H, NMe₂), 5.25(d, *J*=2.9Hz, 1H, CH); 7.32-7.40 (m, 4H, Ar); 7.80(s, 1H, NH); 9.34(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 193.0 (<u>C</u>=O), 152.8 (N<u>C</u>=O), 151.6 (N<u>C</u>=C), 143.6, 127.6, 119.1 (6xAr<u>C</u>), 106.9 (OC<u>C</u>=C), 51.4 (<u>C</u>-NH), 49.7(<u>C</u>H₂), 44.4, 40.2(2xNCH₃), 32.2(><u>C</u><, <u>C</u>H₂), 28.6, 27.0 (<u>C</u>H₃); MS (ESI) m/z 314 ([M+H])⁺ Anal. Calcd for C₁₈ H₂₃ N₃ O₂: C, 68.98; H, 7.40, N, 13.41; Found: C, 68.97, H, 7.39; N 13.42.

4-(3-Methoxy-phenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H***,3***H***-quinazoline-2,5-dione (4h). Mp. 247-248 ⁰C (Lit^{4a} mp 247-248 ⁰C); IR (KBr) v_{max} 3251(br), 3117(br), 2956(br), 1697(vs), 1618(vs), 1376(s), 1233(sh), 1154(m), 1040(w), 788(w), 732(w), 565, 514 cm⁻¹; ^{1H} NMR** (400MHz,CDCl₃ + DMSO-d₆), δ 0.98(s, 3H, CMe); 1.09(s, 3H, CMe); 2.17(q, *J*=16.4Hz, 2H, CH₂); 2.38(q, *J*=17.9Hz, 2H, CH₂); 3.75(s, 3H, OCH₃), 5.22(d, *J*=2.9Hz, 1H, CH); 6.71(dd, *J*=8.22Hz, 1H, Ar); 6.87(m, 2H, Ar), 7.18(t, *J*=8.22Hz, 1H, Ar) 7.28(s, 1H, NH); 9.35(s, 1H, NH); MS (ESI) m/z 301 ([M+H])^{+.} Anal. Calcd for C₁₇ H₂₀ N₂ O₃: C, 68.98; H, 6.71, N, 9.33; Found: C, 68.97, H, 6.74; N 9.33.

7,7-Dimethyl-4-(3,4,5-trimethoxy-phenyl)-4,6,7,8-tetrahydro-1*H,3H*-quinazoline-2,5-dione (4i). Mp 139-140 0 C; IR (KBr) v_{max} 3371(br), 3236(br), 3114(br), 2943(br), 1639(vs), 1377(s), 1240(s), 1128(s), 100(m)2, 760(w), 577 cm⁻¹; ¹H NMR (400MHz,CDCl₃ + DMSO-d₆), δ 1.03(s, 3H, CMe); 1.10(s, 3H, CMe); 2.20(q, *J*=16.9Hz, 2H, CH₂); 2.39(q, *J*=16.9Hz, 2H, CH₂); 3.77(s, 3H, OCH₃), 3.78(s, 6H, OCH₃), 5.20(d, *J*=2.9Hz, 1H, CH); 6.53(s, 2H, Ar); 7.28(s, 1H, NH); 9.33(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 192.9(C=O), 162.9 (NC=O), 152.6 (NC=C), 139.8, 136.6, 114.1, 106.8, 105.3 (6xArC), 103.4(OC-C=C), 59.8 (2xOCH₃), 55.6 (OCH₃), 51.7 (C-NH), 49.7(CH₂), 32.1(>C<, CH₂), 28.8, 26.5 (CH₃); MS (ESI) m/z 361 ([M+H])⁺ Anal. Calcd for C₁₉ H₂₄ N₂ O₅: C, 63.32; H, 6.71, N, 7.77; Found: C, 63.31, H, 6.71; N 7.76.

4-Isopropyl-7,7-dimethyl-4,6,7,8-tetrahydro-1*H,3H*-quinazoline-2,5-dione (4j). Mp >300 0 C; IR (KBr) v_{max} 3235(br), 3127(br), 2960(br), 1696(vs), 1615(vs), 1380(s), 1239(s), 1151(m), 1062(w), 802 cm⁻¹; ¹H NMR (400MHz,CDCl₃ + DMSO-d₆), δ 0.79(d, *J*=7.1Hz, 3H), 0.90(d, *J*=7.1Hz, 3H), 1.06(s, 3H, CMe); 1.08(s, 3H, CMe); 2.17(q, *J*=16.4Hz, 2H, CH₂); 2.32(q, *J*=17.1Hz, 2H, CH₂); 4.08(s, 1H, CH); 7.01(s, 1H, NH); 9.10(s, 1H, NH); ¹³C NMR (75MHz, CDCl₃ + DMSO-d₆): δ 191.6(C=O), 151.5 (NC=O), 151.3 (NC=C), 104.8 (OCC=C), 52.3 (C-NH), 48.6 (CH₂), 31.9 (CH₂) 30.4(>C<), 27.5(CH₃, CH), 25.3, 16.9, 14.0 (3xCH₃); MS (ESI) m/z 237 ([M+H])^{+.} Anal. Calcd for C₁₃ H₂₀ N₂ O₂: C, 66.07; H, 8.53, N, 11.85; Found: C, 66.08, H, 8.53; N 11.84.

7,7-Dimethyl-4-pyridin-4-yl-4,6,7,8-tetrahydro-1*H,3H***-quinazoline-2,5-dione (4k).** Mp >300 0 C; IR (KBr) v_{max} 3122(br), 2962(br), 1689(s), 1637(vs), 1375(s), 1245(s), 1169(m), 786(w), 563 cm⁻¹; ¹H NMR (400 MHz, CDC13+DMSO-d₆), δ 0.88(s, 3H, CMe); 1.04(s, 3H, CMe); 2.03(q, *J*=16.4Hz, 2H, CH₂); 2.38(q, *J*=17.9Hz, 2H, CH₂); 5.22(s, 1H, CH); 7.12-7.74(m, 4H, Ar), 8.45(s, 1H, NH); 9.47(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 192.9 (C=O), 153.1(NC=O), 152.5 (ArC), 151.8 (NC=C), 149.5, 121.3 (4 x ArC), 106.2 (OCC=C), 59.4 (C-NH), 50.8, 49.4 (CH₂), 32.1(>C<), 28.3, 26.5 (CH₃); MS (ESI) m/z 272 ([M+H])^{+.} Anal. Calcd for C₁₅ H₁₇N₃ O₂; C, 66.40; H, 6.32, N, 15.41; Found: C, 66.40, H, 6.33; N 15.41.

7,7-Dimethyl-4-(4-nitrophenyl)-4,6,7,8-tetrahydro-1*H***,3***H***-quinazoline-2,5-dione (4l). Mp 304-305 ^{0}C; IR (KBr) v_{max} 3323(br), 3244(br), 2963(br), 1671(s), 1623(vs), 1375(m), 1230(s), 829(w), 761 cm⁻¹; ¹H NMR (400MHz,CDCl₃ + DMSO-d₆), \delta 0.89(s, 3H, CMe); 1.06(s, 3H, CMe); 2.16(q,** *J***=16.7Hz, 2H, CH₂); 2.35(q,** *J***=17.4Hz, 2H, CH₂); 5.39(d,** *J***=2.8Hz, 1H, CH); 7.52(d,** *J***=8.36Hz, 2H, Ar); 8.09(d,** *J***=8.36Hz, 2H, Ar); 7.56(s, 1H, NH); 9.44(s, 1H, NH); ¹³C NMR (50MHz, DMSO-d₆): \delta 193.2 (<u>C</u>=O), 153.3 (N<u>C</u>=O), 151.8 (N<u>C</u>=C), 151.7, 146.7, 127.7, 123.8 (6x Ar<u>C</u>), 106.5(OC<u>C</u>=C), 51.9 (<u>C</u>-NH), 49.8 (<u>CH₂</u>), 32.4 (>C<,<u>CH₂</u>), 28.7, 26.9 (<u>CH₃</u>); MS (ESI) m/z 316 ([M+H])^{+.} Anal. Calcd for C₁₆ H₁₇ N₃ O₄; C, 60.94; H, 5.43, N, 13.33; Found: C, 60.94, H, 5.44; N 13.32.**

7,7-Dimethyl-4-(3-nitro-phenyl)-4,6,7,8-tetrahydro-1*H*,3*H*-quinazoline-2,5-dione (4m). Mp 299-300 0 C (Lit^{4a} 300-302 0 C) IR (KBr) v_{max} 3117, 2956, 1697, 1618, 1377, 1233, 1153, 788 cm⁻¹; ¹H NMR (400MHz,CDCl₃ + DMSO-d₆), δ 1.06(s, 3H, CMe); 1.12(s, 3H, CMe); 2.18(q, *J*=16.6Hz, 2H, CH₂); 2.43(q, *J*=16.6Hz, 2H, CH₂); 5.84(d, *J*=2.3Hz, 1H, CH); 7.37-7.80(m, 4H, Ar); 7.86(s, 1H, NH); 9.58(s, 1H, NH); MS (ESI) m/z 316 ([M+H])^{+.} Anal. Calcd for C₁₆ H₁₇ N₃ O₄; C, 60.94; H, 5.43, N, 13.33; Found: C, 60.94, H, 5.44; N 13.34.

4-(4-Hydroxyphenyl)-7,7-dimethyl-4,6,7,8-tetrahydro-1*H,3H*-quinazoline-2,5-dione (4n). Mp 300-302 0 C; IR (KBr) v_{max} 3414(br), 3242(br), 2967(br), 1646(vs), 1614(s), 1463(s), 1373(s), 1225(s), 1170(m), 1106(w), 762(w), 504 cm⁻¹; ¹H NMR (400MHz,CDCl₃ + DMSO-d₆), δ 0.98(s, 3H, CMe); 1.09(s, 3H, CMe); 2.14(q, *J*=15.8Hz, 2H, CH₂); 2.33(q, *J*=17.3Hz, 2H, CH₂); 5.14(d, *J*=2.2Hz, 1H, CH); 6.65(d, *J*=8.65Hz, 2H, Ar), 7.06(d, *J*=8.65Hz, 2H, Ar), 7.45(s, 1H, NH); 9.27(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 192.9 (C=O), 156.3 (NC=O), 151.99 (NC=C), 151.94, 135.1, 127.3, 114.9 (6x ArC), 107.8 (OCC=C), 51.3 (C-NH), 49.8 (CH₂), 32.2 (>C<, CH₂), 28.7, 26.8(CH₃); MS (ESI) m/z 287 ([M+H])^{+.} Anal. Calcd for C₁₆ H₁₈ N₂ O₃; C, 67.12; H, 6.34, N, 9.78; Found: C, 67.12, H, 6.33; N 9.77.

7,7-Dimethyl-4-phenyl-2-thioxo-2,3,4,6,7,8-hexahydro-1*H***- quinazolin-5-azone (40).** Mp. 284-285 0 C; IR (KBr) v_{max} 3259(br), 3175(br), 2957(br), 1618(vs), 1566(s), 1459(s), 1373(s), 1145(m), 1100(sh), 158(w), 690, 553, 516, 427 cm⁻¹; ¹H NMR (200MHz, CDCl₃ + DMSO-d₆), δ 0.94(s, 3H, CMe); 1.09(s, 3H, CMe); 2.27 (q, *J*=16.4Hz, 2H, CH₂); 2.37(s, 2H, CH₂); 5.25 (d, *J*=3.1Hz,1H, CH); 7.18-7.29 (m, 5H, Ar); 9.46(s, 1H, NH); 10.37(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 193.4 (C=O), 174.5 (NC=O), 148.5 (NC=C), 143.2, 128.3, 127.3, 126.2 (6xArC), 108.0 (OCC=C), 52.0 (C-NH), 49.7 (CH₂), 32.1(CH₂, >C<), 28.6, 26.6 (CH₃); MS (ESI) m/z 287 ([M+H])^{+.} Anal. Calcd for C₁₆ H₁₈ N₂ O S; C, 67.10; H, 6.33, N, 9.78; Found: C, 67.11, H, 6.33; N 9.77.

4-(3-Chlorophenyl)-7,7-dimethyl-2-thioxo-2,3,4,6,7,8-hexahydro-1*H*-quinazolin-5-one (4p). Mp 275-276 0 C (Lit^{2a} 275-276 0 C) IR (KBr) v_{max} 3236(br), 2950(br), 1611(vs), 1415(w), 1376(s), 1200(m), 1078(w), 804(w), 713(w), 559 cm⁻¹; ¹H NMR (200MHz,CDCl₃ + DMSO-d₆), δ 0.97(s, 3H, CMe); 1.10(s, 3H, CMe); 2.16 (q, *J*=16.4Hz, 2H, CH₂); 2.38(s, 2H, CH₂); 5.28 (d, *J*=3.9Hz, 1H, CH); 7.27-7.16 (m, 4H, Ar); 9.46(s, 1H, NH); 10.41(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 193.5(C=O), 174.6 (NC=O), 148.9 (NC=C), 145.4, 132.8, 130.4, 127.3, 126.1, 124.8 (6x ArC), 107.4 (OCC=C), 51.6 (C-NH), 49.6 (CH₂), 32.1 (>C<, CH₂), 28.5, 26.6 (CH₃); MS (ESI) m/z 321.5 ([M+H])⁺ Anal. Calcd for C₁₆ H₁₇ Cl N₂ O S; C, 59.90; H, 5.34, N, 8.73; Found: C, 59.90, H, 5.34; N 8.72.

4-(4-Bromophenyl)-7,7-dimethyl-2-thioxo-2,3,4,6,7,8-hexahydro-1*H***-quinazolin-5-one (4q). Mp 285-286 {}^{0}C; IR (KBr) v_{max} 3163(br), 2956(br), 1626(vs), 1570(s), 1459(s), 1375(s), 1201(sh), 1176(m), 1102(m), 1008(m), 781(w), 556 cm⁻¹; ¹H NMR (200MHz,CDCl₃ + DMSO-d₆), \delta 0.88(s, 3H, CMe); 1.03(s, 3H, CMe); 2.09(q,** *J***=16.6Hz, 2H, CH₂); 2.29(s, 2H, CH₂); 5.22(d,** *J***=2.9Hz, 1H, CH); 7.16 (d,** *J***=8.7Hz, 2H, Ar); 7.35(s,** *J***=8.7Hz, 2H, Ar); 9.28(s, 1H, NH); 10.30(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): \delta 193.4 (<u>C</u>=O), 174.5 (N<u>C</u>=O), 148.7 (N<u>C</u>=C), 142.5, 131.7, 131.2, 128.4, 120.4 (6x Ar<u>C</u>), 107.6 (OC<u>C</u>=C), 51.6(<u>C</u>-NH), 49.6 (<u>C</u>H₂),** 32.1(><u>C</u><, <u>C</u>H₂), 28.5, 26.6 (CH₃); MS (ESI) m/z 366 ([M+H])^{+.} Anal. Calcd for C₁₆ H₁₇ Br N₂ O S: C, 52.61; H, 4.69, N, 7.67; Found: C, 52.60, H, 4.69; N 7.66.

4-(4-Methoxyphenyl)-7,7-dimethyl-2-thioxo-2,3,4,6,7,8-hexahydro-1*H*-quinazolin-5-one

(4r). Mp 272-275 ^oC; IR (KBr) v_{max} 3261(br), 3164(br), 2956(br), 1640(vs), 1584(vs), 1375(s), 1252(m), 1168(s), 1023(m), 827(w), 768(w), 551 cm⁻¹; ¹H NMR (200MHz,CDCl₃ + DMSO-d₆), δ 0.96(s, 3H, CMe); 1.10(s, 3H, CMe); 2.14(q, *J*=16.0Hz, 2H, CH₂); 3.11(s, 2H, CH₂); 3.75(s, 3H, OCH₃), 5.17(d, *J*=2.9Hz, 1H, CH); 6.81(d, *J*=8.7Hz, 2H, Ar); 7.20(d, *J*=8.7Hz, 2H, Ar); 9.42(s, 1H, NH); 10.34(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 194.0 (<u>C</u>=O), 174.8 (N<u>C</u>=O), 159.0 (Ar<u>C</u>), 148.8 (N<u>C</u>=C), 136.0, 128.0, 114.2, 108.7 (5x Ar<u>C</u>), 100.3 (OC<u>C</u>=C), 55.5 (OCH₃), 52.0 (<u>C</u>-NH), 50.3 (<u>CH₂</u>), 32.7 (><u>C</u><, <u>CH₂</u>), 29.2, 27.2 (CH₃); MS (ESI) m/z 317 ([M+H])^{+.} Anal. Calcd for C₁₇ H₂₀ N₂ O₂ S: C, 64.53; H, 6.37, N, 8.85; Found: C, 64.52, H, 6.36; N 8.86.

4-(3-Methoxyphenyl)-7,7-dimethyl-2-thioxo-2,3,4,6,7,8-hexahydro-1*H*-quinazolin-5-one

(4s). Mp 270-272 ⁰C; IR (KBr) v_{max} 3340(br), 3181(br), 2956(br), 1611(vs), 1572(s), 1374(s), 1245, 1147, 1040, 769(w), 704, 567 cm^{-1.1}H NMR (400MHz,CDCl₃ + DMSO-d₆), δ 0.97(s, 3H, CMe); 1.11(s, 3H, CMe); 2.22(q, =16.1Hz, 2H, CH₂); 2.39(s, 2H, CH₂); 3.77(s, 3H, OCH₃), 5.22(d, *J*=3.6Hz, 1H, CH); 6.76-7.22(m, 4H, Ar); 9.51(s, 1H, NH); 10.41(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 193.5 (<u>C</u>=O), 174.6(N<u>C</u>=O), 159.1(N-<u>C</u>=C), 148.6, 144.6, 130.0, 129.4, 118.2, 112.3 (6x Ar<u>C</u>), 107.8(OC<u>C</u>=C), 54.8 (O<u>C</u>H₃), 51.7(<u>C</u>-NH), 49.7 (<u>C</u>H₂), 32.1(><u>C</u><, <u>C</u>H₂), 28.6, 26.5 (2x<u>C</u>H₃); MS (ESI) m/z 317 ([M+H])⁺ Anal. Calcd for C₁₇ H₂₀ N₂ O₂ S; C, 64.53; H, 6.37, N, 8.85; Found: C, 64.54, H, 6.36; N 8.85.

7,7-Dimethyl-2-thioxo-4*-p***-tolyl-2,3,4,6,7,8-hexahydro-1***H***-quinazolin-5-one (4t).** Mp. 273-275; IR (KBr) v_{max} 3278(br), 2957(br), 1606(vs), 1572(s), 1374(vs), 1261, 1097(m), 816, 759(w), 580 cm⁻¹; ¹H NMR (500MHz,CDCl₃ + DMSO-d₆), δ 0.95(s, 3H, CMe); 1.10(s, 3H, CMe); 2.14(q, *J*=16.4Hz, 2H, CH₂); 2.36(s, 2H, CH₂); 2.30(s, 3H, CH₃), 5.23(d, *J*=3.1Hz, 1H, CH); 7.18-7.04 (m, 4H, Ar); 9.32(s, 1H, NH); 10.29(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 193.4 (C=O), 174.4 (N-C=O), 148.3 (N-C=C), 140.3, 136.5, 128.8, 126.1 (6x Ar<u>C</u>), 108.1(OC<u>C</u>=C), 51.7 (<u>C</u>-NH), 49.7(CH₂), 32.1(><u>C</u><, <u>C</u>H₂), 28.6, 26.6, 20.5 (<u>C</u>H₃); MS (ESI) m/z 301 ([M+H])^{+.} Anal. Calcd for C₁₇ H₂₀ N₂ O S: C, 67.97; H, 6.71, N, 9.32; Found: C, 67.96, H, 6.72; N 9.32.

4-(4-Dimethylamino-phenyl)-7,7-dimethyl-2-thioxo-2,3,4,6,7,8-hexahydro-1*H***-quinazolin-5-one (4u).** Mp. 275-276 ⁰C; IR (KBr) v_{max} 3278(br), 3180(br), 2957, 1616(vs), 1454(s), 1371, 1235, 807, 764, 556(m), 499 cm⁻¹; ¹H NMR (200MHz,CDCl₃ + DMSO-d₆), δ 0.97(s, 3H, CMe); 1.10(s, 3H, CMe); 2.25(q, *J*=16.0Hz, 2H, CH₂); 2.37(s, 2H, CH₂); 2.97(s, 6H, NMe₂), 5.18(d, *J*=2.9Hz, 1H, CH); 6.89-7.20 (m, 4H, Ar); 9.37(s, 1H, NH); 10.33(s, 1H, NH); ¹³C NMR (75MHz, DMSO-d₆): δ 193.5 (<u>C</u>=O), 174.6 (N-<u>C</u>=O), 159.1(N-<u>C</u>=C), 148.7, 144.6, 129.5, 118.3, 112.3 (6x Ar<u>C</u>), 107.8 (OC<u>C</u>=C), 54.8 (<u>C</u>-NH), 51.7(<u>C</u>H₂), 34.7 (<u>C</u>H₂), 32.1(><u>C</u><), 28.6, 26.6 (<u>C</u>H₃), 18.4 (2x N<u>C</u>H₃); MS (ESI) m/z 330 ([M+H])⁺ Anal. Calcd for C₁₈ H₂₃ N₃ O S; C, 65.62; H, 7.04, N, 12.75; Found: C, 65.63, H, 7.03; N 12.75.

Typical procedure for the synthesis of 1,8-dioxooctahydroxanthene

A solution of benzaldehyde **1a** (10mmol), dimedone **2a** (20mmol) and MeCN (5 ml) containing TMSCl (10mmol) was refluxed till the reaction was completed (monitored by TLC). After completion the reaction mixture was cooled to RT, extracted with EtOAc (2x 25ml). The organic layer was washed with water (2x 20ml), dried over Na₂SO₄ and concentrated to obtain crude product. The crude product was crystallized by ethanol to obtain pure 9-aryl-1,8-dioxooctahydroxanthene **5a** as white crystalline solid.

The representative spectral (¹H NMR) data of 1,8-dioxo-octahydroxanthene derivatives **5a-5e** are given below.

3,3,6,6-Tetramethyl-9-phenyl-3,4,5,6,7,9-hexahydro-2*H***-xanthene-1,8-dione (5a). Mp 201-203 ⁰C (Lit¹¹ mp 202-204⁰C); ¹H NMR (300MHz, CDCl₃), δ0.99(s, 6H, CMe₂); 1.11(s, 6H, CMe₂); 2.14-2.23(q,** *J***=15.86Hz, 4H 2xCH₂); 2.43 (s, 4H, 2xCH₂); 4.68 (s, 1H, CH); 7.04-7.25 (m, 5H, Ar).**

9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2*H***-xanthene-1,8-dione (5b). Mp 230-232 ⁰C, (Lit¹¹mp 228-230⁰C); ¹H NMR (300MHz, CDCl₃), δ0.99(s, 6H, CMe₂); 1.11(s, 6H, CMe₂); 2.10-2.23(q,** *J***=16.61Hz, 4H 2xCH₂); 2.42 (s, 4H, 2xCH₂); 4.63 (s, 1H, CH); 7.14-7.20 (m, 4H, Ar).**

9-(2,4-Dichlorophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2*H***-xanthene-1,8-dione (5c).** Mp 254-255 ⁰C (Lit¹¹ mp 253-254 ⁰C); ¹H NMR (300MHz, CDCl₃), δ1.03(s, 6H, CMe₂); 1.11(s, 6H, CMe₂); 2.10-2.22(q, *J*=16.61Hz, 4H 2xCH₂); 2.40 (s, 4H, 2xCH₂); 4.85 (s, 1H, CH); 7.13-7.43(m, 3H, Ar).

9-(4-Bromophenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2*H***-xanthene-1,8-dione (5d). Mp 240-242 ^{0}C; IR (KBr) v_{max} 3442(br), 2932(br), 1660(vs), 1585(s), 1362(s), 1274(m), 1201(m), 1138(w), 1047(m), 694(w), 572, cm⁻¹;¹H NMR (300MHz, CDCl₃), \delta0.99(s, 6H, CMe₂); 1.11(s, 6H, CMe₂); 2.10-2.23(q,** *J***=16.61Hz, 4H 2xCH₂); 2.42 (s, 4H, 2xCH₂); 4.63 (s, 1H, CH); 7.12(d,** *J***=8.30Hz, 2H, Ar) 7.29(d,** *J***=8.30Hz, 2H, Ar); ¹³C NMR (300MHz, CDCl₃): \delta 196.3 (2x <u>C</u>=O), 162.4 (2x C=<u>C</u>-O), 143.2 , 131.1, 130.1, 120.2 (6x Ar<u>C</u>), 115.2 (2x(<u>C</u>=C), 50.6 (2x <u>C</u>H₂), 40.8 (2x <u>C</u>H₂), 32.1(2x ><u>C</u><), 31.5(<u>C</u>H), 29.2, 27.2 (4x <u>C</u>H₃); MS (ESI) m/z 429 ([M+H])^{+.} Anal. Calcd for C₂₃ H₂₅ Br O₃: C, 64.34; H, 5.87; Found: C, 64.33, H, 5.87.**

9-(3-Methoxyphenyl)-3,3,6,6-tetramethyl-3,4,5,6,7,9-hexahydro-2*H***-xanthene-1,8-dione (5e).** Mp160-162 0 C; IR (KBr) v_{max} 3442(br), 2932(br), 1660(s), 1585(s), 1362(s), 1274, (sh) 1201(m), 1138(m), 1047(w), 694(w), 572, cm⁻¹; ¹H NMR (300MHz, CDCl₃), δ 1.01(s, 6H, CMe₂); 1.11(s, 6H, CMe₂); 2.12-2.23(q, *J*=15.86Hz, 4H 2xCH₂); 2.43 (s, 4H, 2xCH₂); 3.37(s, 3H, OMe); 4.66 (s, 1H, CH); 6.58-7.10(m, 4H, Ar); ¹³C NMR (300MHz, CDCl₃): δ 196.2 (2x C=O), 162.2 (2x C=C-O), 159.3, 145.6, 128.8, 120.8, 115.5, 114.3(6x ArC), 111.8 2x C=C), 55.0 (OCH₃), 50.7 (2x CH₂), 40.8 (2x CH₂), 32.1 (2x >C<), 31.7 (CH), 29.1, 27.3(4x CH₃); MS (ESI) m/z 381 ([M+H])⁺ Anal. Calcd for C₂₄ H₂₈ O₄: C, 75.76; H, 7.42; Found: C, 75.76, H, 7.41.

Acknowledgements

We thank Dr. J. S. Yadav, Director, IICT, Hyderabad for constant encouragement and support.

References

- 1. Kidwai, M.; Saxena, S.; Khan, M. K. R.; Thukral, S. S. Eur. J. Med. Chem. 2005, 40, 816.
- 2. (a) Yarim. M.; Sarac, S.; Kilic, S. F.; Erol, K. *Il Farmaco*. **2003**, *58*,17. (b) Yarim, M, Sarac, S.; Ertan, M.; Kilic, S. F.; Erol, K. *Arzneim-Forsch*. **2002**, *52*, 27.
- 3. Hassani, Z.; Islami, M. R.; Kalantari, M. Bio. Org., Med. Chem. Lett. 2006, 16, 4479.
- (a) Tonkikh, N. N.;.Strakovs, A; Petrova, M. V. *Chem. Heterocycl.Compds* 2004, *40*, 43. (b)
 Candan, M. M.; Kendi, E.; Yarim, M.; Sarac, S.; Ertan, M. *Anal. Sci.* 2001, *17*, 1023. (c)
 Sabitha, G.; Reddy, G. S. K.; Reddy, K. B.; Yadav, J. S. *Tetrahedran Lett.* 2003, *44*, 6497.
- 5. Kantevari S.; Srinivasu, V. N. V.; Biradar, D. O.; Nagarapu L. J. Mol. Catalysis A: Chemical 2006, 266, 109.
- (a) Dilman, A. D.; Loffe, S. L.; *Chem. Rev.* 2003, 103, 733. (b) Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J. Org. Chem. 2003, 68, 2510. (c) Wang, L. S.; Hollis, T. K. Org.Lett. 2003, 14, 2543. (d) Liu, Y.; Xu, X.; Zang, Y. Tetrahedron 2004, 60, 4867. e) Sabitha, G.; Reddy, G. S. K.; Reddy, K. B.; Yadav, J. S. Synthesis 2004, 263. (f) Sabitha, G.; Reddy, K. S.; Reddy, G. S K.; Fatima, N. Synlett 2005, 2347. (g) Barga, A. L.; Vargas, F.; Sehnem, J. A.; Barga, R. C. J. Org. Chem. 2005, 70, 9021. (h) Xu, L. W.; Xia, C. G. Synthesis 2004, 2191.
- 7. Wang, T.; Zhang, Z.; Meanwell, N. A. *Tetrahedron Lett.* **1999**, *40*, 6745.
- 8. Zigeuner, G.; Eisenreich, V.; Weichsel, H.; Adam, W. Monatsh. Chem. 1970, 101, 1731.
- 9. Kappe, C. O. J. Org. Chem. 1997, 62, 7201.
- 10. Zhu, Y-l.; Huang, S-l.; Pan, Y-j. Eur. J. Org. Chem., 2005, 2354.
- 11. Jin, T-S.; Zang, J-S.; Xiao, J-C.; Wang, A-Q.; Li, T-S. Synlett 2004, 866.
- 12. Lin, H.; Zhao, Q.; Xu, B.; Wang, X. J. Mol. Catalysis A: Chemical, 2007 (In Press)
- 13. We thank the referees and scientific editor for their valuable suggestions.