QSPR correlations of half-wave reduction potentials of *cata*-condensed benzenoid hydrocarbons

Jyoti Singh,^a Shalini Singh,^b Shahida Meer,^c Vijay K. Agrawal,^a Padmakar V. Khadikar,^{d*} and Alexandru T. Balaban^e

 ^a QSAR and Computer Chemical Laboratories, A.P.S. University, Rewa 486 003, India E-mail: jvoti_singh07@rediffmail.com; vijay-agrawal@lycos.com
 ^b Department of Chemistry, Bareilly College, Bareilly (U.P.) 243 001 India E-mail: shalini_singh15@yahoo.com
 ^c Department of Chemistry, Holkar Model and Autonomus College, Indore 452 100, India ^d Research Division, Laxmi Fumigation and Pest Control, Pvt. Ltd., 3, Khatipura, Indore 452 007, India E-mail: pvkhadikar@rediffmail.com
 ^e Texas A&M University at Galveston, 5007 Avenue U, Galveston, TX 77551, USA E-mail: balabana@tamug.edu

Abstract

Polarographic half-wave reduction potentials of 31 *cata*-condensed benzenoid hydrocarbons were estimated by using lowest unoccupied molecular orbital energies (E_{LUMO}), an indicator of the number of linearly-fused benzenoid rings (*n*), and distance-based topological indices. The first two parameters account for most of the variance. A parallelism between experimentally measured measured Diels-Alder reactivity and polarographic half-wave reduction potentials is illustrated by a correlation between these data.

Keywords: Benzenoid hydrocarbons, topological indices, regression analysis, molecular descriptor, LUMO, polarographic half-wave reduction potential, QSPR

Introduction

The publication of the present article was prompted by the recent paper of Nikolić, Milicević, and Trinajstić about the QSPR study of polarographic half-wave reduction potentials ($E_{\frac{1}{2}}$ values) of benzenoid hydrocarbons.¹ These hydrocarbons included a selection of $E_{\frac{1}{2}}$ values for both *cata*-condensed and *peri*-condensed systems.

Benzenoid polycyclic aromatic hydrocarbons (benzenoids for brevity) are uniquely characterized by their dualist graphs consisting of vertices situated in the centers of benzenoid

rings, and of edges connecting vertices corresponding to condensed rings, i.e., rings sharing one C-C bond.^{2,3} Benzenoids are classified as *cata*-condensed (catafusenes), *peri*-condensed (perifusenes) and corona-condensed (coronoids): catafusenes have no carbon atom common with three benzenoid rings, and their dualist graphs are acyclic; perifusenes have carbon atoms common with three benzenoid rings, and their dualist graphs have three-membered rings (and possibly also acyclic branches), whereas coronoids have dualist graphs with larger rings (and possibly also three-membered rings and/or acyclic branches). Long ago,^{2,3} one of us argued that the notation introduced for catafusenes, indicating the geometry of their condensation by means of digits 0, 1, and 2 for their dualist graphs, contains essential information on many properties of these catafusenes. Digit 0 indicates linear annelation (angle of 180° in the dualist graph) giving rise to anthracene portions, whereas digits 1 and 2 denote kinked annelation (angles of 120° or 240° starting from one extremity of the catafusene, keeping the right \rightarrow left direction of annelation corresponding to digits 1 and 2, respectively, and choosing among possible notations by the minimal number formed by digits 0, 1, and 2). In particular, the number of adjacent zeros (i.e., of linearly condensed benzenoid rings) is closely connected to the energy corresponding to the ${}^{1}L_{b}$ band (or *p*-band in Clar's nomenclature)^{4,5} in the electronic absorption spectra.

The connection between absorption spectra and half-wave reduction potentials of benzenoids $(E_{\frac{1}{2}})$ has been repeatedly mentioned in the literature.^{6–18} In both cases the lowest unoccupied molecular orbital (LUMO) is involved, and electron affinities or other quantum-chemical parameters are also derived from such experimental data.^{19–28}

So far, practically all quantitative structure-property relationships (QSPR) involving $E_{\frac{1}{2}}$ (including ref.¹) have resulted in correlations in terms of E_{LUMO} . The literature on $E_{\frac{1}{2}}$ data was reviewed in several papers.^{29–33}

In the present study we find that a second strongly correlated parameter (not yet tested in QSPR studies of $E_{\frac{1}{2}}$) is the number of adjacent zeros in the code of catafusenes. We will denote this parameter by n = 1 + the number of adjacent zeros in the code. More subtle topological differences between catafusenes (having the same numbers h of benzenoid rings and numbers of anthracene portions) may be encoded in topological indices of benzenoids, possibly to be used as a third parameter in the correlations between structure and $E_{\frac{1}{2}}$ values. We restrict our study to all 31 catafusene values for $E_{\frac{1}{2}}$ reported in Bergman's paper,⁸ whereas ref.¹ had included only 26 catafusene values. Because $E_{\frac{1}{2}}$ values (in Volts) are negative numbers, we use $-E_{\frac{1}{2}}$ values for convenience in the Tables and Figures. $E_{\frac{1}{2}}$ depends on the difference between E_{HOMO} and E_{LUMO} ; these potentials have been shown to be a linear function of both E_{HOMO} and E_{LUMO} ; these potentials have been shown to be a linear function of both E_{HOMO} and E_{LUMO} ;

Results and Discussion

Data on half-wave reduction potentials and molecular descriptors for catafusenes

Data of $E_{\frac{1}{2}}$ (in Volt) vs. the saturated calomel electrode using ethylene glycol monomethyl ether (cellosolve) with tetrabutylammonium iodide as supporting electrolyte as well as E_{LUMO} values were taken from Bergman's paper.⁸ An extended discussion of the reaction mechanism, the fate of the intermediate radical anion and its subsequent protonation, its ESR spectrum, and the solvents used in the polarography of benzenoids can be found in the literature..^{29–33} Aprotic solvents such as acetonitrile, dioxane, tetrahydrofuran, ethylenediamine, dimethylformamide, or tetramethylurea present advantages over aqueous mixtures of ethanol, isopropyl alcohol, dioxane, tetrahydrofuran. Strongly acidic media such as sulfuric acid and the presence of oxygen gas considerably influence the mechanism of the electrolytic reduction, i.e., the number of electrons involved and the intermediate products. Many benzenoids have more than one (i.e., two or three) half-wave reduction steps. Cellosolve was preferred as solvent because it dissolves even pentacene.

The molecular descriptors used in the present study include the Wiener index (W),³⁴ the Szeged index (Sz),^{35–38} the Ivan-Padmakar index (IP),^{39–42} and the average distance-based connectivity index (J);⁴³ also several first and second order indices related to each other, namely the Randić-Kier-Hall indices (${}^{1}\chi$ and ${}^{2}\chi$),⁴⁴ the valence Kier-Hall indices taking bond multiplicity into consideration (${}^{1}\chi^{v}$ and ${}^{2}\chi^{v}$), and the differential connectivity indices (Δ^{1} and Δ^{2}).^{45,46} Zeroorder indices were not included because of their high degeneracy for the present set of compounds. For catafusenes with *h* benzenoid rings, their nominal molecular weight (NMW) is linearly correlated with *h* by the relationship: NMW = 28 + 50*h*. All these indices were computed using DRAGON software.⁴⁷ Structural optimization was carried out using HyperChem⁴⁸ and ACD Labs software.⁴⁹ Calculations of topological indices were performed by stepwise regression using the method of maximum-*R*².^{50,51}

Results and discussion of QSPR for $E_{\frac{1}{2}}$ values

Figure 1 presents the structures, dualist graphs, and codes of the 31 catafusenes in the same order as in Bergman's paper⁸ (which also contains 47 perifusenes that are not discussed in the present paper). Table 1 presents $-E_{\frac{1}{2}}$ values, codes, and the molecular descriptors. Table 2 contains the intercorrelations factors between the molecular descriptors and shows that all four χ -type connectivity indices have intercorrelation factors above 0.99.

Table 3 presents monoparametric and biparametric correlations for $-E_{\frac{1}{2}}$ values. By far the highest correlations are seen for E_{LUMO} and *n*. Figure 2 indicates that the linear monoparametric correlations between $-E_{\frac{1}{2}}$ and E_{LUMO} on one hand, and between $-E_{\frac{1}{2}}$ and *n* (calculated as 1 + the number of adjacent zeros in the code) on the other hand, present the highest correlation coefficients ($\mathbb{R}^2 = 0.958$ and 0.920, respectively). Although in this study *n* takes only integer values between 1 and 4, there is practically no overlap between the ranges of $-E_{\frac{1}{2}}$ values for these four integers; thus, the average values for each range almost perfectly vary linearly with *n*.

Figure 1. Structures of catafusenes 1–31, their dualist graphs, and their codes in brackets.

Comp	$E_{1/2}$	Code	h	п	E_{LUM}	W	Sz	PI	J	¹ χ	² χ	$^{1}\chi^{v}$	$^{2}\chi^{v}$	$^{1}\Delta$	$^{2}\Delta$
					0										
1.	1.98	[.]	2	1	0.618	109	243	96	1.925	4.966	4.089	3.405	2.347	1.561	1.742
2.	1.46	[0]	3	2	0.414	279	656	216	1.682	6.933	6.081	4.809	3.547	2.124	2.534
3.	1.14	[00]	4	3	0.295	569	1381	404	1.465	8.899	8.072	6.214	4.746	2.685	3.326
4.	0.86	[000]	5	4	0.220	1011	2506	635	1.288	10.865	10.064	7.619	5.945	3.246	4.119
5.	1.94	[1]	3	1	0.605	271	677	218	1.740	6.949	5.994	5.095	3.804	1.854	2.190
6.	1.53	[01]	4	2	0.452	553	1325	388	1.512	8.916	7.986	6.500	5.003	2.416	2.983
7.	1.19	[001]	5	3	0.327	987	2410	606	1.321	10.882	9.977	7.904	6.203	2.978	3.774
8.	0.95	[0001]	6	4	0.244	1605	3975	587	1.169	12.848	11.969	9.309	7.402	3.539	4.567
9.	1.97	[1(.)]	4	1	0.684	513	1269	390	1.642	8.949	7.837	6.232	4.637	2.717	3.200
10.	1.54	[01(.)]	5	2	0.499	903	2290	610	1.451	10.916	9.828	8.196	6.418	2.720	3.410
11.	1.21	[001(.)]	6	3	0.356	1485	3783	593	1.271	12.882	11.82	9.601	7.618	3.281	4.202
12.	0.93	[0001(.)]	7	4	0.220	2279	5836	1194	1.240	14.848	13.811	11.005	8.817	3.843	4.994
13.	1.55	[102]	5	2	0.474	971	2354	418	1.346	10.899	9.891	7.910	6.164	2.989	3.727
14.	1.25	[1002]	6	3	0.348	1581	3879	878	1.188	12.865	11.882	9.315	7.363	3.550	4.519
15.	0.85	[10002]	7	4	0.186	2407	5964	1194	1.061	14.832	13.874	10.720	8.563	4.112	5.311
16.	1.81	[12]	4	1	0.520	545	1301	390	1.538	8.933	7.899	6.767	5.283	2.166	2.616
17.	1.44	[012]	5	2	0.405	971	2354	610	1.348	10.899	9.891	7.893	6.184	3.006	3.707
18.	1.33	[0120]	6	2	0.348	1573	3847	880	1.199	12.865	11.882	9.297	7.380	3.568	4.502
19.	1.75	[11]	4	1	0.568	529	1253	390	1.587	8.933	7.909	6.761	5.304	2.172	2.605
20.	1.57	[101]	5	2	0.492	955	2290	610	1.367	10.899	9.891	7.910	6.164	2.989	3.727
21.	1.65	[11(.)]	5	1	0.532	883	2202	420	1.492	10.933	9.751	8.202	6.383	2.731	3.368
22.	1.57	[101(.)]	6	2	0.522	1453	3647	597	1.300	12.899	11.733	9.607	7.579	3.292	4.154
23.	1.59	[1(.)1(.)]	6	1	0.512	1333	3447	599	1.426	12.933	11.603	9.619	7.515	3.314	4.088
24.	1.73	[112]	5	1	0.550	931	2234	420	1.408	10.916	9.814	7.899	6.148	3.017	3.666
25.	1.40	[011]	5	2	0.419	939	2258	610	1.395	10.899	9.900	7.893	6.189	3.006	3.711
26.	1.79	[1212]	5	1	0.502	963	2330	420	1.361	10.916	9.804	8.178	6.438	2.738	3.366
27.	1.53	[010]	5	2	0.437	979	2378	591	1.335	10.882	9.977	8.164	6.564	2.718	3.413
28.	1.22	[0010]	6	3	0.336	1589	3903	876	1.184	12.848	11.969	9.569	7.763	3.279	4.206
29.	1.50	[0102]	6	2	0.429	1573	3847	595	1.197	12.865	11.882	9.557	7.736	3.308	4.146
30.	1.52	[10201]	7	2	0.456	2375	5836	1206	1.080	14.848	13.787	10.967	8.897	3.881	4.890
31.	1.47	[01020]	7	2	0.435	2383	5860	1200	1.077	14.832	13.874	10.961	8.932	3.871	4.942

Table 1. Values of $E_{1/2}$, h, n, E_{LUMO} and topological indices used

Catafusenes have been described in the literature with codes differing by interchanging digits 1 and 2; e.g., compounds **13** and **20**, **16** and **19**, **17** and **25**, **24** and **26** are isoarithmic, i.e., they have the same number of Kekulé structures.⁵² Also their $-E_{\frac{1}{2}}$ values are very close.

The plot of $-E_{\frac{1}{2}}$ vs. E_{LUMO} has a positive slope, the plot of $-E_{\frac{1}{2}}$ vs. *n* has a negative slope. The former variation is due to an easier access of the available first LUMO. The latter variation is due to the fact that upon adding an electron to acene substructures the resulting radical anion has two Clar sextets (as in 9,10-dihydroanthracene), whereas the acene portion has only one Clar sextet. The longer the acene substructure the higher the delocalization of the π -electron system and the more stable the reaction product.

	$E_{1/2}$	h	E _{LUMO}	п	W	Sz	PI	J	¹ χ	² χ	$^{1}\chi^{v}$	$^{2}\chi^{v}$	$^{1}\Delta$	$^{2}\Delta$
$E_{1/2}$	1.000	-0.577	0.979	-0.960	-0.580	-0.583	-0.591	0.671	-0.573	-0.599	-0.531	-0.530	-0.670	-0.701
h	-0.577	1.000	-0.539	0.504	0.959	0.959	0.894	-0.939	0.999	0.999	0.995	0.993	0.994	0.997
$E_{\rm LUMO}$	0.979	-0.538	1.000	-0.93	-0.560	-0.561	-0.578	0.663	-0.534	-0.563	-0.495	-0.499	-0.624	-0.658
n	-0.960	0.504	-0.934	1.000	0.540	0.545	0.553	-0.611	0.499	0.529	0.458	0.458	0.605	0.642
W	0.580	0.959	-0.560	0.540	1.000	0.999	0.943	-0.901	0.957	0.963	0.947	0.949	0.941	0.947
Sz	-0.583	0.959	-0.561	0.545	0.999	1.000	0.940	-0.893	0.959	0.963	0.9480	0.950	0.940	0.946
PI	-0.591	0.894	-0.578	0.553	0.943	0.940	1.000	-0.855	0.893	0.901	0.877	0.881	0.894	0.899
J	0.671	-0.939	0.663	-0.611	-0.901	-0.893	-0.855	1.000	-0.938	-0.949	-0.923	-0.929	-0.936	-0.946
$^{1}\chi$	-0.573	0.999	-0.534	0.499	0.958	0.959	0.893	-0.938	1.000	0.999	0.996	0.994	0.962	0.965
²χ	-0.599	0.995	-0.563	0.529	0.963	0.963	0.901	-0.949	0.999	1.000	0.993	0.991	0.968	0.971
$^{1}\chi^{v}$	-0.531	0.985	-0.495	0.458	0.948	0.949	0.877	-0.923	0.996	0.993	1.000	0.999	0.935	0.938
$^{2}\chi^{v}$	-0.530	0.993	-0.499	0.458	0.950	0.950	0.881	-0.929	0.994	0.991	0.999	1.000	0.929	0.934
$^{1}\Delta$	0.670	0.994	-0.624	0.605	0.941	0.940	0.894	-0.936	0.963	0.967	0.935	0.929	1.000	0.998
$^{2}\Delta$	-0.701	0.997	-0.658	0.642	0.947	0.947	0.899	-0.946	0.965	0.971	0.938	0.934	0.998	1.000

Table 2. Intercorrelation matrix for the parameters reported in Table 1

Figure 2. Monoparametric correlations of $-E_{\frac{1}{2}}$ vs. E_{LUMO} (left plot) and $-E_{\frac{1}{2}}$ vs. *n* (right plot).

Statistical parameters are the correlation coefficient (R^2), the standard error (*S.E.*), and the Fisher ratio (*F*). For validating the results we used the Pogliani quality parameter (*Q*).^{53,54} R^2_A denotes adjusted R^2 . A higher correlation coefficient ($R^2 = 0.974$) is obtained in a biparametric correlation involving both E_{LUMO} and *n* (model 15 according to Tables 3 and 4; cf. Figure 3).

Model	Parameters used	S.E.	R^2	$R^2_{\rm A}$	F	Q
1	ELUMO	0.045	0.958	0.957	688.7	21.7
2	h	0.177	0.333	0.309	14.4	3.2
3	n	0.061	0.920	0.917	335.0	15.7
4	W	0.176	0.335	0.312	14.6	3.2
5	Sz	0.175	0.340	0.317	14.9	3.3
6	PI	0.174	0.349	0.327	15.5	3.3
7	J	0.160	0.450	0.431	23.7	4.1
8	$^{1}\chi$	0.177	0.327	0.304	14.1	3.2
9	$^{2}\chi$	0.173	0.358	0.336	16.2	3.4
10	$^{1}\chi^{v}$	0.183	0.282	0.257	11.3	2.9
11	$^{2}\chi^{v}$	0.183	0.280	0.258	11.3	2.8
12	$^{1}\Delta$	0.160	0.447	0.428	23.5	4.1
13	$^{2}\Delta$	0.154	0.492	0.474	28.1	4.5
14	$E_{\rm LUMO}, h$	0.044	0.961	0.959	348.0	22.2
15	$E_{\rm LUMO}, n$	0.036	0.974	0.971	518.3	27.4
16	$E_{\rm LUMO}, W$	0.044	0.959	0.956	327.5	22.2
17	$E_{\rm LUMO},{\rm Sz}$	0.044	0.959	0.956	329.9	22.2
18	$E_{\text{LUMO}}, \text{PI}$	0.044	0.958	0.955	324.5	22.2
19	$E_{ m LUMO}, J$	0.044	0.958	0.955	323.8	22.2
20	$E_{\text{LUMO}}, {}^{1}\chi$	0.043	0.961	0.958	346.4	22.7
21	$E_{\rm LUMO}, {}^2\chi$	0.043	0.961	0.958	345.0	22.7
22	$E_{\text{LUMO}}, {}^{1}\chi^{\text{v}}$	0.043	0.960	0.957	340.5	22.7
23	$E_{\rm LUMO}, {}^2\chi^{\rm v}$	0.044	0.960	0.957	335.9	22.2
24	$E_{\rm LUMO}, {}^{1}\Delta$	0.042	0.963	0.960	366.5	23.3
25	$E_{\rm LUMO}, {}^2\Delta$	0.042	0.963	0.960	367.9	23.3
26	h, n	0.058	0.931	0.927	191.5	16.6
27	<i>h</i> , W	0.178	0.341	0.294	7.2	3.2
28	h, Sz	0.178	0.343	0.297	7.3	3.2
29	h, PI	0.176	0.361	0.315	7.9	3.4
30	<i>h</i> , J	0.159	0.475	0.438	12.6	4.3
31	h , $^{1}\chi$	0.131	0.644	0.618	25.3	6.1
32	h , $^{2}\chi$	0.123	0.685	0.663	30.5	6.7
33	h , $^{1}\chi^{v}$	0.147	0.548	0.516	17.0	5.0

Table 3. One- and two-variable modeling of half-wave potential $(E_{1/2})$

34	h , $^{2}\chi^{v}$	0.158	0.479	0.441	12.8	4.3	
35	h , ¹ Δ	0.153	0.512	0.477	14.7	4.6	
36	h , $^{2}\Delta$	0.131	0.646	0.621	25.5	6.1	
37	n, W	0.060	0.925	0.920	173.8	16.0	
38	n, Sz	0.060	0.925	0.920	173.8	16.0	
39	<i>n</i> , PI	0.060	0.925	0.920	174.3	16.0	
40	n, J	0.057	0.931	0.927	191.4	16.9	
41	n , $^{1}\chi$	0.057	0.931	0.927	191.6	16.9	
42	n , $^{2}\chi$	0.057	0.931	0.926	191.2	16.9	
43	n , $^{1}\chi^{v}$	0.057	0.931	0.926	189.9	16.9	
44	$n, 2\chi^{v}$	0.057	0.931	0.926	188.8	16.9	
45	n, Δ^{1}	0.057	0.932	0.927	193.8	16.9	
46	2 , $^{2}\Delta$	0.057	0.932	0.927	193.8	16.9	

Using the other molecular descriptors presented in Table 1, we attempted to explore triparametric correlations in order to see whether more subtle differences in the topology of catafusenes may be accounted for by such indices. The results of triparametric correlations in terms of E_{LUMO} , n, and one other molecular descriptor are displayed in Table 5. It can be seen that no distance-based topological index provides a better correlation than the number h of benzenoid rings. Since the best triparametric correlation in terms of E_{LUMO} , n, and h increases the value of R^2 only from 0.974 (model 15 in Table 3 and Figure 3) to 0.977, we consider that the biparametric model 15 is sufficiently satisfactory. The exceptionally high deviation for compound **23** is due to the exceptional branching (see next section).

Comp.	$E_{1/2}$ (exp.)	$E_{1/2}$ (calc.)	Residual
1	1.980	1.887	0.093
2	1.460	1.443	0.017
3	1.140	1.138	0.002
4	0.860	0.904	-0.044
5	1.940	1.866	0.074
6	1.530	1.505	0.025
7	1.190	1.190	0.000
8	0.950	0.943	0.007
9	1.970	1.995	-0.025
10	1.540	1.582	-0.042
11	1.210	1.237	-0.027
12	0.930	0.904	0.026
13	1.550	1.541	0.009
14	1.250	1.224	0.026
15	0.850	0.849	0.001
16	1.810	1.727	0.083
17	1.440	1.428	0.012
18	1.330	1.335	-0.005
19	1.750	1.805	-0.055
20	1.570	1.570	0.000
21	1.650	1.747	-0.097
22	1.570	1.619	-0.049
23	1.590	1.714	-0.124
24	1.730	1.776	-0.046
25	1.400	1.451	-0.051
26	1.790	1.698	0.092
27	1.530	1.480	0.050
28	1.220	1.205	0.015
29	1.500	1.467	0.033
30	1.520	1.511	0.009
31	1.470	1.479	-0.009

Table 4. Comparison of observed and calculated $E_{1/2}$ using model 15, and the residuals

Model	Parameters used	<i>S. E</i> .	R^2	$R^2_{\rm A}$	F	Q
47	$E_{\rm LUMO}, h, n$	0.033	0.977	0.975	384.1	29.9
48	$E_{\rm LUMO}, n, W$	0.035	0.974	0.971	334.9	29.9
49	$E_{\text{LUMO}}, n, \text{Sz}$	0.035	0.974	0.971	346.9	28.1
50	$E_{\text{LUMO}}, n, \text{PI}$	0.035	0.974	0.971	342.1	28.1
51	$E_{ m LUMO}$, n, J	0.035	0.974	0.972	348.8	28.1
52	<i>h</i> , <i>n</i> , W	0.054	0.940	0.933	141.3	17.9
53	h, n, Sz	0.054	0.940	0.933	141.6	17.9
54	<i>h, n,</i> PI	0.058	0.933	0.925	125.7	16.6
55	<i>h, n,</i> J	0.058	0.932	0.924	123.9	16.6

Table 5. Three variable modeling of half-wave reduction potentials $(E_{1/2})$

Parallelism between polarographic half-wave reduction potentials and Diels-Alder reactivity of catafusenes

With samples of benzenoids provided by Clar in the 1980s, Biermann and Schmidt measured spectrophotometrically the rates of Diels-Alder reactions of polycyclic benzenoids with an excess of maleic anhydride under carefully controlled conditions in 1,2,4-trichlorobenzene solution at 91.5 \pm 0.1 °C.^{55–57} It was known that anthracene readily reacts with dienophiles or arynes, and that phenanthrene or other fibonacenes⁵⁸ do not. Fibonacenes have no zeros in their code. The reaction rate is presented in the following as $V(\text{diene}) = 6 + \log k_2 (k_2 \text{ is in [LM}^{-1}\text{s}^{-1}])$. If there are several sites for the cycloaddition, the measured rate may be divided by the number of sites (which can be 1, 2, or 3) to obtain V(diene)/site. In 1985, in a joint paper with one of us, the diene reactivity of benzenoids was rationalized using dualist graphs and equations derived from their topology.⁵⁹ The variables were the longest acene portion (parameter *n*) and a "form parameter" (*f*) depending on the annelation type at the ends of the acene moiety.⁶⁰ The values of this parameter *f* ranged from 1 (for no kinked annelation) to 9 (for four kinked ends). The straight lines calculated from equation (1) for the reaction rate (log k_2) meet at one point.⁶⁰

 $(6 + \log k_2)_{\text{calc}} = (9.24 + 0.50f)\log n + 0.81 - 0.53f \qquad \text{Eq. (1)}$ Values of the shape parameter f can be seen in Figure 4.

Figure 4. Shape parameter f for catafusenes. The long line symbolizes an acene part of the dualist graph, and the short lines a fibonacenic part.

Parameter n influences both the Diels-Alder reactivity and the polarographic reduction potentials of benzenoids; Table 6 and Figure 5 present data and correlations between these two sets of experimental data. With no anthracene moiety (no zeros in the code) the catafusene does not undergo a Diels-Alder addition with maleic anhydride. There is a significant correlation and not much of a difference between correlations involving the measured reaction rate or the measured reaction rate per site.

Comp.	Code	h	$E_{\rm LUMO}$	f	n V _{diene}	V_{diene} /site	$E_{\frac{1}{2}}(\mathbf{V})$
1	[.]	2	0.6180	0	1 -	-	1.98
2	[0]	3	0.4142	1	2 3.36	3.36	1.46
3	[00]	4	0.2950	1	3 4.97	4.67	1.135
4	[000]	5	0.2197	1	4 6.22	6.22	0.86
5	[1]	3	0.6052	0	1 -	-	1.935
6	[01]	4	0.4523	4	2 2.13	2.13	1.53
7	[001]	5	0.3271	4	3 4.23	4.05	1.19
8	[0001]	6	0.2436	4	4 5.65	5.46	0.945
9	[1(.)]	4	0.6840	0	1 -	-	1.97
10	[01(.)]	5	0.4991	5	2 1.83	1.83	1.54
11	[001(.)]	6	0.3557	5	3 3.77	3.77	1.205
12	[0001(.)]	7	0.2200	5	4 5.45	5.45	0.93
13	[102]	5	0.4735	7	2 1.02	1.02	1.545
14	[1002]	6	0.3480	7	3 3.09	2.79	1.25
15	[10002]	7	0.1860	7	4 4.88	4.88	0.85
16	[12]	4	0.5201	0	1 -	-	1.805
17	[012]	5	0.4048	5	2 2.58	2.58	1.435
18	[0120]	6	0.3482	6	2 3.03	2.78	1.33
19	[11]	4	0.5676	0	1 -	-	1.745
20	[101]	5	0.4918	4	2 1.02	1.02	1.57
21	[11(.)]	5	0.5319	0	1 -	-	1.645
22	[101(.)]	6	0.5224	6	2 0.53	0.53	1.57
23	[1(.)1(.)]	6	0.5115	0	1 -	-	1.59
24	[112]	5	0.5498	0	1 -	-	1.73
25	[011]	5	0.4186	3	2 -	-	1.4
26	[1212]	5	0.5019	0	1 -	-	1.79
27	[010]	5	0.4372	5	2 1.82	1.52	1.525
28	[0010]	6	0.3357	6	3 3.82	3.82	1.22
29	[0102]	6	0.4287	6	2 1.74	1.74	1.495
30	[10201]	7	0.4560	7	2 0.91	0.91	1.515
31	[01020]	7	0.4350	7	2 2.00	1.69	1.465

Table 6. Catafusenes with parameters, Diels-Alder reactivity and half-wave reduction potentials

Because all three experimentally determined properties of catafusenes (electronic absorption spectra, half-wave reduction potentials, and Diels-Alder reactivity) are determined by the same factors, namely the energy levels of HOMO-LUMO, it is logical that there should be correlations between these data. It is remarkable that parameters derived from a simple graph-theoretical model (the dualist graph of the catafusene) can provide satisfactory correlations with the data characterizing these phenomena.

Figure 5. Correlation of Diels-Alder reaction rates *vs.* $E_{1/2}$ (left plot). Correlation of Diels-Alder reaction rates per site *vs.* $E_{1/2}$ (right plot).

Attempted correlations between $-E_{1/2}$ and E_{LUMO} , *n*, and *f*

The monoparametric dependence of $-E_{1/2}$ versus E_{LUMO} , illustrated by Fig. 2, becomes improved in the biparametric correlation in terms of E_{LUMO} and n, displayed by Fig. 3. On adding the shape parameter f for the dualist graph of the catafusene, the result is illustrated by Fig. 6.

Figure 6. Correlation of observed and calculated $E_{\frac{1}{2}}$ using the model containing E_{LUMO} , *n*, and *f* as the correlating parameters.

The regression parameters and quality of correlations for different models are presented below.

Monoparametric regression

 $E_{1/2} = 0.390 + 2.466(\pm 0.098)E_{LUMO}$ N = 31, S.E. = 0.044, R² = 0.958, R²_A = 0.957, F = 666.1

Biparametric regression

 $E_{1/2} = 0.983 + 1.638(\pm 0.215)E_{LUMO} - 0.110(\pm 0.027)n$ $N = 31, S.E. = 0.035, R^2 = 0.974, R^2_A = 0.972, F = 525.9$

Triparametric regression

 $E_{1/2} = 0.984 + 1.635(\pm 0.218)E_{LUMO} - 0.112(\pm 0.028)n + 0.001(\pm 0.004)f$ $N = 31, S.E. = 0.036, R^2 = 0.974, R^2_A = 0.971, f = 339.6$

It can be seen that upon adding *f* as a third parameter (which for Diels-Alder reactivity had led to improved correlation), here there is no improvement of R^2 , and the standard error even increases. Therefore triparametric correlations in terms of E_{LUMO} , *n* and either *h* or *f* are practically equivalent and they do not add substantial improvements to the biparametric regression shown in Fig. 3 and in the Graphical Abstract in terms of E_{LUMO} and *n* ($R^2 = 0.974$, *S.E.* = 0.036).

Conclusions

It is shown that dualist graphs of catafusenes encode sufficient information for explaining satisfactorily the variance of half-wave reduction potentials $(E_{\frac{1}{2}})$ of 31 *cata*-condensed benzenoids. For the same catafusenes, earlier work had outlined correlations between $E_{\frac{1}{2}}$ and the absorption maxima in the UV absorption spectra. Here we present a third type of phenomenon that is quantitatively related to $E_{\frac{1}{2}}$, namely reaction rates with dienophiles.

References

- 1. Nikolić, S.; Milicević, A.; Trinajstić, N. Croat. Chem. Acta 2006, 79, 155.
- 2. Balaban, A. T.; Harary, F. Tetrahedron 1968, 24, 2505.
- 3. Balaban, A. T. Tetrahedron 1969, 25, 2949.
- 4. Clar, E. Polycyclic Hydrocarbons, Academic Press: New York, 1964.
- 5. Clar, E. The Aromatic Sextet, Wiley: London, 1972.
- 6. Pullman, A.; Pullman, B.; Berthier, G. Bull. Soc. Chim. Fr. 1950, 17, 591.
- 7. Watson, A. T.; Matsen, F. A. J. Chem. Phys. 1950, 18, 1305.
- 8. Bergman, I. Trans. Faraday Soc. 1954, 50, 829.
- 9. Hoijtink, G. J.; van Schooten, J. Rec. Trav. Chim. 1952, 71, 1089.
- 10. Hoijtink, G. J.; van Schooten, J. Rec. Trav. Chim. 1953, 72, 903.
- 11. Hoijtink, G. J.; van Schooten, J.; de Boer, E.; Aalbersberg, W. I. *Rec. Trav. Chim.* **1954**, *73*, 355.
- 12. Hoijtink, G. J. Rec. Trav. Chim. 1955, 74, 1525.
- 13. Bergman, I. Trans. Faraday Soc. 1956, 52, 690.
- 14. Basu, S.; Bhattacharya, R. J. Chem. Phys. 1956, 25, 596.
- 15. Fernandez-Alonso, J. I.; Domingo, R. Nature 1957, 179, 829.
- 16. Basu, S.; Bhattacharya, R. Nature 1957, 180, 143.
- 17. Bergman, I. Experientia 1962, 18, 46.
- 18. Loutfy, R. O.; Loutfy, R. O. Can. J. Chem. 1976, 54, 1454–1463.
- 19. Wawzonek, S.; Laitinen, H. A. J. Am. Chem. Soc. 1942, 64, 2365-2368.
- 20. Maccoll, A. Nature 1949, 163, 178.
- 21. Lyons, L. E. Nature 1950, 166, 193.
- 22. Given, P. H. Nature 1958, 181, 1001.
- 23. Given, P. H.; Peover, M. E. J. Chem. Soc. 1960, 385.
- 24. Aalbersberg, W. I.; Mackor, E. L. Trans. Faraday Soc. 1960, 56, 1351.
- 25. Heilbronner, E.; Murrell, J. N. Theor. Chim. Acta 1963, 1, 235.
- 26. Peover, M. E. Trans. Faraday Soc. 1964, 60, 417.
- 27. Zahradník, R.; Párkányi, C. Talanta 1965, 12, 1289.

- 28. Shawali, A. S.; Elnadouli, B. E.; Párkányi, C.; Herndon, W. C. *Bull. Soc. Chim. Belg.* **1984**, *93*, 867–874.
- 29. Le Guillanton, G. Bull. Soc. Chim. Fr. 1963, 2359.
- 30. Wawzonek, S. Talanta, 1965, 12, 1229-1235.
- 31. Peover, M. E. Electroanalytical Chem. 1967, 2, 1-51.
- 32. Zhdanov, S. I. Russ. Chem. Rev. 1969, 38, 608-625 (translated from Usp. Khim.)
- 33. Given, P. H.; Peover, M. E. *Advances in Polarography* **1960**, *3*, 948–964, Pergamon Press, Oxford.
- 34. Wiener, H. J. Am. Chem. Soc. 1947, 69, 17-20.
- 35. Gutman, I. Graph Theory Notes New York 1994, 27, 9–15.
- 36. Khadikar, P. V.; Kale, P. P.; Deshpande, N. V.; Karmarkar, S., Agrawal, V. K. Commun. Math. Comput. Chem. (MATCH), 2001, 43, 7–15.
- 37. Khadikar, P. V.; Deshpande, N. V.; Kale, P. P.; Dobrynin, A.; Gutman, I.; Domotor, G. J. *Chem. Inf. Comput. Sci.* **1995**, *35*, 545–550.
- 38. Khadikar, P. V.; Karmarkar, S.; Agrawal, V. K.; Singh, J.; Shrivastava, A.; Lukovits, I.; Diudea, M. V. *Lett. Drug Design Discovery* **2005**, *2*, 606–624.
- 39. Khadikar, P. V. Nat. Acad. Sci. Lett. 2000, 29, 113-118.
- 40. Khadikar, P. V.; Karmarkar, S.; Agrawal, V. K. J. Chem. Inf. Comput. Sci. 2001, 41, 934–949.
- 41. Khadikar, P. V.; Kale, P. P.; Deshpande, N. V.; Karmarkar, S.; Agrawal, V. K. J. Math. Chem. 2001, 29, 143–150.
- 42. P. E. John, P. E.; Khadikar, P.V.; Singh, J. J. Math. Chem. 2006 (in press).
- 43. Balaban, A. T. Chem. Phys. Lett. 1982, 89, 399-404.
- 44. Randic, M. J. Am. Chem. Soc. 1975, 97, 6609-6615.
- 45. Kier, L. B.; Hall, L. H. *Molecular Connectivity in Structure-Activity Analysis*, Research Studies Press-Wiley, Chichester, 1986.
- 46. Kier, L. B.; Hall, L. H. *Molecular Connectivity in Chemistry and Drug Research,* Academic Press, New York. 1976.
- 47. DRAGON software for calculation of topological indices: http://www.disat.unimib.it
- 48. HyperChem-7 software for calculating molecular modeling parameters, <u>http://www.hyper.com</u>
- 49. ACD-Lab software for calculating physicochemical parameters; ChemSketch 3.0, http://www.acdlabs.com
- 50. Chatterjee, S.; Hadi, A. S.; Price, B. Regression Analysis by Examples, 3rd Ed., Wiley, New York, 2000.
- 51. NCSS, <u>http://www.ncss.com</u>.
- 52. Balaban, A. T; Tomescu, I. Commun. Math. Comput. Chem. (MATCH), 1983, 14, 155-182.
- 53. Pogliani, L. Amino Acids, 1994, 6, 141–153; J. Phys. Chem. 1996, 100, 18065–18077.
- 54. Pogliani, L. Chem. Rev. 2000, 100, 3827-3858.
- 55. Biermann, D.; Schmidt, W. J. Am. Chem. Soc. 1980, 102, 3163-3173; 3173-3181.

- 56. Biermann, D.; Schmidt, W. Isr. J. Chem. 1980, 20, 312-318.
- 57. Hess, Jr, B.A.; Schaad, L. J.; Herndon, W. C.; Biermann, D.; Schmidt, W. *Tetrahedron* **1981**, *37*, 2983–2987.
- 58. Balaban, A. T. Commun. Math. Comput. Chem. (MATCH) 1989, 24, 29-38
- 59. Balaban, A. T.; Biermann, D.; Schmidt, W. Nouv. J. Chim. 1985, 9, 443-449.
- 60. Balaban, A. T. Pure Appl. Chem. 1982, 54, 1075-1096.