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Abstract 
This account summarizes Dr. Subhash Basak’s work in the field of molecular similarity. In 
particular, it looks at the development and application of quantitative molecular similarity 
analysis (QMSA) techniques using physicochemical properties, topological indices, and atom 
pairs as descriptors for developing structure- or property-based similarity spaces and the use of a 
k-nearest neighbors (kNN) technique to estimate the properties or activities of chemicals within 
the space. Additionally, the account discusses the novel tailored similarity technique pioneered 
by Dr. Basak’s research group and discusses the future of molecular similarity analysis 
techniques. 
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1. Introduction 
 
The concepts of molecular similarity/dissimilarity have applications in various aspects of 
chemistry, pharmaceutical drug design, toxicology, and ecotoxicology. The similarity of objects 
is an intuitive notion, which has been used by human beings from time immemorial. In the 
realms of chemistry, biochemistry, and toxicology the notion of similarity is used in many ways. 
For example, a natural product chemist, in the aftermath of the chance discovery of a naturally 
occurring chemical possessing useful therapeutic effects, would want to know whether the 
chemical’s analogs (similar molecules) also have similar therapeutic profiles. A positive answer 
will indicate that the molecule is not a lone example having the therapeutic activity, but belongs 
to a group of structures that possess the property of interest. This might lead to an understanding 
of the structural basis of the pharmacological action and help in the molecular design and 
development of more appealing chemical entities. To find analogs of the candidate chemical, one 
might search databases such as the Chemical Abstracts Service database1 (27.5 million organic 
and inorganic substances) or other databases of natural products. At the current stage of scientific 
development, this cannot be done manually. One needs rapid, automated methods for measuring 
structural similarity. In the areas of toxicology and the hazard assessment of chemicals, 
similarity is used routinely. Most of the chemicals that are currently used for commercial and 
industrial purposes2 have little or no test data, not even the simple physicochemical properties 
needed for their hazard estimation. In the face of this paucity of data, two approaches have been 
used: a) class-specific quantitative structure-activity relationship (QSAR) modeling, and b) 
modeling using structural analogs. The United States Environmental Protection Agency 
(USEPA) has class-specific QSAR models for more than 300 specific chemical classes. 
However, this covers only a small fraction of the Toxic Substances Control Act (TSCA) 
Inventory or the chemicals submitted in the Premanufacture Notification (PMN) process. If a 
chemical’s toxicity is not amenable to prediction by class-specific QSARs, the default approach 
is to use its analogs in the estimation of the hazards posed by the chemical. Such analogs can be 
selected either subjectively by experts, based on their intuitive notions of structural similarity, or 
computationally, using some measures of intermolecular similarity based on specific structural 
aspects of the chemical under consideration.  
 The fundamental notions in the theory and practice of molecular similarity arise out of the 
structure-property similarity principal which states that similar structures usually have similar 
properties. The tacit assumption underlying this notion is that the relationships between the 
structures of molecules and their various physicochemical and biological properties are governed 
by smooth, although unknown, mathematical functions. In other words, the relationship between 
structure and property is such that small variations in molecular structure will lead to small 
perturbations in the magnitude of a given property, rather than to large, abrupt changes. 
Empirical observations ranging from the basic chemistry of the elements to the biochemical and 
toxicological effects of chemicals generally support such a notion. For example, in the periodic 
table of elements, two atoms belonging to the same elemental group are more similar to each 
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other with respect to physical properties and reactivity pattern than any two chosen from 
different groups. A useful concept in organic chemistry is the idea of the homologous series. The 
addition of one methyl group to a molecule generally increases the magnitude of properties such 
as boiling point and hydrophobicity by a discrete amount with a fair degree of regularity. In the 
realms of therapeutics and toxicology, chemicals having the same pharmacophore or toxicophore 
usually have similar pharmacological or toxicological profiles.3 Similarity allows us to group 
together a set of selected objects, e.g., molecules, that are judged by some measure to be not too 
different from each other. Often such exercises in similarity are conducted empirically or 
intuitively, and tend to work well. 
 There are also a large number of examples that run apparently counter to this simplistic 
notion of similarity. In comparing the toxicities of benzene and toluene, we see an interesting 
example of two apparently similar chemicals that have vastly different properties. Whereas 
benzene is a known carcinogen, toluene is not. The addition of a methyl group makes an 
extremely important difference in the metabolism and toxic action of these compounds. On the 
other hand, there is a large body of literature concerning bioisosteric molecules that have no 
apparent structural similarity but are recognized by cellular receptors as similar.4 These are 
“rough spots” in the applications of molecular similarity. 
 Molecular similarity works well and gives useful results in the middle ground between 
these two extremes where, on the one hand, intuitively different molecules have very similar 
properties, and, on the other, apparently similar entities have different properties. 
 There are also practical problems with the computation and application of molecular 
similarity. We face the first serious quagmire when we attempt to quantify the notion of 
“similar” structures, because the concept of “structure” is not uniquely defined in chemistry. In 
fact, the structure of the same chemical entity can be represented by more than one mutually 
distinct and non-equivalent object (vide infra).  
 A perusal of the above indicates that the territory of molecular similarity is a messy area, 
being complicated by such factors as ambiguity in the representation of molecular structure, 
observation that in some cases small differences in structures may lead to large differences in 
biological function, and the phenomenon of bioisosterism where cellular targets can 
accommodate apparently widely different structures into the same site. Another factor in the 
computation of molecular similarity is that a large number of mathematical functions can be used 
to derive measures of similarity for a pair of molecules starting from the same set of structural 
descriptors.5,6 In defense of the usefulness of similarity, one can say that this is a widely 
understood intuitive notion that works well to relate molecular structure to its function both 
qualitatively and quantitatively in many cases. 
 In this review, we will be concerned with various representations of molecular structure 
and the extraction of molecular descriptors from these representations. We will show how the 
use of different descriptors belonging to the same class of structural representation may lead to 
the selection of mutually different sets of analogs. We will also attempt to illuminate the basic 
nature of the similarity space. We will show how selected neighbors have been used in the 
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prediction of properties using similarity spaces derived from descriptors that maximally 
characterize the variance within the set of molecular structures. Finally, we will discuss our 
recently formulated idea of “tailored similarity” where the descriptor space for the computation 
of intermolecular similarity is property-driven instead of being intuitive or arbitrary. 
 
 
2. The Molecular Structure Conundrum 
 
Molecular descriptors are used for the characterization of structure and for the computation of 
intermolecular similarity. These descriptors are derived from different types of structural models 
for molecules. 
 The lack of a uniform approach in the characterization of structure is attested to by the 
multiplicity of methods by which chemical structure is modeled. At the most fundamental level, 
the structure of any model of an assembled entity (e.g., a molecule) may be defined as the pattern 
of relationships among its constituent parts as distinct from the values associated with them.7 In 
chemistry, one has to deal with structures of different levels of sophistication. In particular, there 
are a large number of models that seek to explain properties of molecules in terms of 
characteristics of their structure.8 This is partly because we need models to predict diverse 
properties of molecules that might not originate from analogous molecular or sub-molecular 
phenomena. The term “molecule” means different things when it represents an assembly of 
identifiable atoms held together by fairly rigid bonds as compared to a collection of delocalized 
nuclei and electrons in which all identical particles are indistinguishable.9 Consequently, the term 
molecular structure represents a group of non-equivalent conceptual entities. There is no reason 
to believe that when we discuss different topics (e.g., organic synthesis, reaction rate theories, 
spectroscopic transitions, reaction mechanisms, or ab initio calculations) using the concept of 
molecular structure, the different meanings we attach to the term molecular structure ultimately 
flow from a single concept.9,10 This fundamental problem has been stated by Woolley10 as 
follows: 
 

...there is no reason to suppose that the same basic idea can provide a basis for the 
discussion of all molecular experiments. This is understandable if one recognizes that 
every physical and chemical concept is only defined with respect to a certain class of 
experiments, so that it is perfectly reasonable for different sets of concepts, although 
mutually incompatible, to be applicable to different experiments. 

 
 The different methods of relating molecular structure to the properties of molecules differ 
not only in terms of choice of the critical set of entities used to represent molecular structure, but 
also in terms of techniques used to characterize molecular structure.8,11–14 
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Figure 1. A hierarchical approach to the representation of chemical structure. 
 
 In the realm of structural chemistry, our group has recognized a hierarchy of four major 
representations; viz., topostructural, topochemical, geometrical, and quantum chemical; of 
increasing complexity and difficulty of computation (Figure1). 
 Any concept of molecular structure is a hypothetical sketch of the organization of 
molecules. Such a model object is a general theory and remains empirically untestable. A model 
object has to be grafted onto a specific theory to generate a theoretical model15 which can be 
empirically tested. For example, when it was suggested by Sylvester16 in 1878 that the structural 
formula of a molecule is a special kind of graph, it was an innovative general theory without any 
predictive potential. When the idea of combinatorics was applied on chemical graphs (model 
objects), it could be predicted that “there should be exactly two isomers of butane (C4H10)” 
because “there are exactly two tree graphs with four vertices” when one considers only the 
nonhydrogen atoms present in C4H10.17 This is a theoretical model of limited predictive potential. 
Although it predicts the existence of chemical species, given a set of molecules, e.g., isomers of 
hexane (C6H14), the model is incapable of predicting any property. This is because of the fact that 
any empirical property P maps a set of chemical structures into the set R of real numbers and 
thereby orders the set empirically. Therefore, to predict the property from structure, it is 
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convenient if the structure can be mapped onto the set of real numbers, leading to molecular 
descriptors.18,19 This is a more specific theoretical model based on the same model object 
(chemical graph) and can be accomplished by using specific graph invariants.  
 The predictive potential of a theoretical model depends primarily on: (1) the efficacy of the 
representation of the critical aspects of the structure related to the property of interest, and (2) the 
optimal use of the molecular descriptors. 
 This review examines the development and use of quantitative molecular similarity 
analysis (QMSA) methods that make use of easily calculated molecular descriptors derived from 
chemical graph theory, viz., topostructural indices (TSI), topochemical indices (TCI), and a 
particular class of substructures known as atoms pairs (APs). Such descriptors can be calculated 
quickly and, therefore, can be applied to the analysis of medium-sized and large databases. 
Experimental physicochemical properties and quantum chemical parameters have also been used 
for similarity analysis,5,20–23 though we will not review them in this chapter.  
 
 
3. Calculation of Molecular Descriptors 
 
A graph G = (V,E) consists of a finite nonempty set V of points together with a prescribed set E 
of unordered pairs of distinct points of V.24 A structural model assigns to the points of G a 
realization in some applied field and each element of E indicates a pair of points which are in the 
finite nonempty irreflexive symmetric binary relation described by G. In a molecular graph (the 
conventional chemical structure), the set of atoms comprises the point set V and covalent 
chemicals bonds are elements of E. Such a graph retains the full topology of the molecule and 
represents molecular structure, where the word “structure” is used to denote a formal system of 
relations of certain logical types without emphasizing the entities which they relate. It is because 
of this general nature that graph-theoretic methods have been used for characterizing structure in 
such diverse areas as theoretical physics, chemistry, biological and social sciences, engineering, 
computer science and linguistics. Interestingly, it has been postulated that the logical homology 
of organization in apparently dissimilar systems is the reason why we find isomorphic laws in 
different fields of science. 
 In chemistry, two types of graphs, viz., hydrogen-suppressed and hydrogen-filled graphs, 
are often used to model molecular structure. While in the former only the non-hydrogen atoms 
are represented by points, in the latter all atoms (including hydrogen atoms if present in the 
molecular formula) are represented by vertices. G1 and G2 are the hydrogen-suppressed and 
hydrogen-filled graphs, respectively, of ethyl acetate (I) (Figure 2). 
 Such a graph represents the “topology of a molecule” in the sense that it depicts the pattern 
of connectedness of atoms in the molecule, being, at the same time, independent of such metric 
aspects of molecular structure as equilibrium distance between nuclei, valence angles, etc. 
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Figure 2. Ethyl acetate represented by its structural formula (I), the labeled hydrogen suppressed 
graph (G1), and the labeled hydrogen-filled graph (G2). 
 
 Molecular graphs can be represented by different types of matrices, e.g., the adjacency 
matrix, distance matrix, and incidence matrix. Invariants derived from such matrices are used as 
numerical molecular descriptors. 
 The distance matrix D(G) of a nondirected graph G with n vertices is a symmetric n x n 
matrix (dij), where dij is equal to the distance between vertices vi and vj in G. Each diagonal 
element dij of D(G) is equal to zero. Since topological distance in a graph is not related to the 
weight attached to each edge (bond), D(G) does not represent valence bond structures of 
molecules containing more than one covalent bond between adjacent atoms. 
 The adjacency matrix A(G2) and the distance matrix D(G2) for the ethyl acetate is 
illustrated in Figure 3. 
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Figure 3. The adjacency matrix (A) and distance matrix (D) for the hydrogen-suppressed graph 
(G1) of ethyl acetate. 
 
 From the adjacency matrix of a graph with n vertices, it is possible to calculate δi, the 
degree of the ith vertex, as the sum of all entries in the ith row: 

∑
=

=
n

j
iji a

1
δ         (1) 

 Vertex degree is integral to the calculation of the connectivity indices as formulated by 
Randic and Kier and Hall.25 
 The zero order connectivity index, 0χ , is defined as:25 

( )∑ −=
i

i
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10 δχ        (2) 

and Randic’s connectivity index, 1χ , is defined as:25 
( )∑ −=

edgesall
ji

2
11 δδχ        (3) 

 Based on these two indices, Kier, Murray, Randic, and Hall developed a generalized 
connectivity index hχ considering paths of type v0, v1, … vh of length h in the molecular graph:26 

( )∑ −= 2
1

,,, 10 vhvv
h δδδχ K       (4) 

where the summation is taken over all paths of length h. 
 Kier and Hall extended this method to include cluster (hχC), path-cluster (hχPC), and cyclic 
(hχCh) types of simple connectivity indices which encode information about branching patterns, 
paths extending from branch points, and the presence of ring fragments, respectively.25 In order 
to encode information about bond order, bonding connectivity indices (hχb) were developed using 
the tree method of Basak et al.8 
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 A further extension of Kier and Hall’s work introduced the valence connectivity indices 
that are based on vertex-weighted graphs where the weight, δi

v, of the ith vertex is calculated as 
follows:25 

i
v
i

v
i h−Ζ=δ        (5) 

where Zi
v is the number of valence electrons of the atom represented by the ith vertex of the 

chemical graph and hi is the number of hydrogen atoms attached to it. Valence connectivity 
indices, hχv, are calculated by replacing δi in equation 4 with δi

v. It is to be noted, however, that 
in the case of certain atoms; e.g., chlorine, bromine, iodine, fluorine and sulfur; the δv values 
used are derived empirically through calibration with physicochemical properties.25 However, 
the physical and/or graph-theoretic basis for these empirical adjustments remains far from clear. 
 The Ph (h = 0–10) parameters used in this study represent the number of occurrences of 
paths of length h in the hydrogen-suppressed molecular graph G. P0 (paths of length = 0) is the 
number of vertices and P1 (paths of length = 1) is the number of edges of G. Higher-order Ph 
terms can be calculated using graph-theoretic algorithms. 
 The Wiener index, W,27 is the first topological index reported in the chemical literature. It 
is calculated from the distance matrix D(G) of a hydrogen-suppressed graph G as the sum of 
entries in the upper triangular distance submatrix:28 

∑ ∑ ⋅==
ij h

hij ghdW 2
1       (6) 

where gh is the number of unordered pairs of vertices whose distance is h. 
 Information-theoretic topological indices are calculated by the application of information 
theory to chemical graphs. An appropriate set A of n elements is derived from a molecular graph 
G depending upon certain structural characteristics. On the basis of an equivalence relation 
defined on A, the set A is partitioned into disjoint subsets Ai of order ni (i = 1, 2, …, 
h;). A probability distribution is then assigned to the set of equivalence classes: 

h

h

ppp
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where pi = ni/n is the probability that a randomly selected element of A will occur in the ith 
subset. 
 The mean information content of an element A is defined by Shannon’s relation:29 

∑
=

−=
h

i
ii ppIC

1
2log       (7) 

The logarithm is taken at base 2 for measuring the information content in bits. The total 
information content of the set A is then n times IC. 
 It is to be noted that information content of a graph G is not uniquely defined. It depends 
on the way the set A is derived from G as well as on the equivalence relation which partitions A 
into disjoint subsets Ai. For example, when A constitutes the vertex set of a chemical graph G, 
two methods of partitioning have been widely used: (a) chromatic-number coloring of G, where 
two vertices of the same color are considered equivalent, and (b) determination of the orbits of 
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the automorphism group of G whereafter vertices belonging to the same orbit are considered 
equivalent. 
 Rashevsky30 was the first to calculate information content of graphs where “topologically 
equivalent” vertices are placed in the same equivalence class. In Rashevsky’s approach, two 
vertices u and v of a graph are said to be topologically equivalent if and only if for each 
neighboring vertex ui (i = 1, 2, …, k) of the vertex u there is a distinct neighboring vertex vi of 
the same degree for the vertex v. Subsequently, Trucco31,32 defined topological information of 
graphs on the basis of graph orbits. In this method, vertices which belong to the same orbit of the 
automorphism group are considered topologically equivalent. While Rashevsky used linear 
graphs with indistinguishable vertices to symbolize molecular structure, weighted graphs or 
multigraphs are better models for conjugated or aromatic molecules because they more properly 
reflect the actual bonding patterns, i.e., electron distribution. 
 To account for the chemical nature of vertices as well as their bonding pattern, Sarkar, Roy 
and Sarkar33 calculated information content of chemical graphs on the basis of an equivalence 
relation where two atoms of the same element are considered equivalent if they possess an 
identical first-order topological neighborhood. Since properties of atoms or reaction centers are 
often modulated by physicochemical characteristics of distant neighbors, i.e., neighbors of 
neighbors, it was deemed essential to extend this approach to account for higher-order neighbors 
of vertices. This can be accomplished by defining open spheres for all vertices of a chemical 
graph. If r is any non-negative real number and v is a vertex of the graph G, then the open sphere 
S(v, r) is defined as the set consisting of all vertices vj in G such that ∂(v, vj) < r. Obviously, S(v, 
0) = Ø, S(v, r) = v for 0 < r < 1, and S(v, r) is the set consisting of v and all vertices vj of G 
situated at unit distance from v, if 1 < r < 2. 
 One can construct such open spheres for higher integral values of r. For a particular value 
of r, the collection of all such open spheres S(v, r), where v runs over the whole vertex set V(G), 
forming a neighborhood system of the vertices of G. A suitably defined equivalence relation can 
then partition V(G) into disjoint subsets consisting of topological neighborhoods of vertices up to 
rth order neighbors. Such an approach has already been initiated and the information-theoretic 
indices calculated are called indices of neighborhood symmetry.34 
 We have symbolized chemical species by weighted linear graphs. Two vertices u0 and v0 of 
a molecular graph are said to be equivalent with respect to the rth order neighborhood if and only 
if corresponding to each path u0, u1, …, ur of length r there is a distinct path v0, v1, …, vr of the 
same length such that the paths have similar edge weights, and both u0 and v0 are connected to 
the same number and type of atoms up to the rth order bonded neighbors. The detailed 
equivalence relation is described in our earlier studies.34,35 
 Once partitioning of the vertex set for a particular order of neighborhood is completed, ICr 
is calculated by equation 7. It is clear that the vertices of a graph belonging to the same 
equivalence class in terms of the above relation may be permuted without disturbing the relation 
already defined on the vertex set. Therefore, as pointed out by Mowshowitz,36–39 measures of 



General Papers                                                                                                               ARKIVOC 2006 (ix) 157-210 

ISSN 1424-6376                                                       Page 168                                                                         ©ARKAT 

molecular complexity give information content of structures in relation to a system of 
transformations leaving the structure invariant. 
 Basak, Roy and Ghosh40 defined another information-theoretic measure, structural 
information content (SICr), which is calculated as:  

nICSIC rr 2log/=       (8) 
where ICr is calculated from equation 7 and n is the total number of vertices of the graph. 
 Another information-theoretic invariant, complementary information content (CICr) is 
defined as:41 

rr ICnCIC −= 2log       (9) 
CICr represents the difference between maximum possible complexity of a graph (where each 
vertex belongs to a separate equivalence class) and the realized topological information of a 
chemical species as defined by ICr. 
 The information-theoretic index on graph distance, ID

W, is calculated from the distance 
matrix D(G) of a chemical graph G as follows:42 

∑ ⋅−= hhgWWI h
W
D 22 loglog     (10) 

The mean information index, ID
W, is found by dividing the information index, ID

W, by W. 
 Because the distance matrix of a graph does not account for the chemical nature of edge 
multiplicity of vertices, indices of neighborhood symmetry are capable of characterizing 
chemical structure more efficiently as compared to ID

W or ID
W. 

 Table 1 provides a list of calculated descriptors, along with brief descriptions and 
hierarchical classification. It is important to note, however, that different sets of descriptors were 
used in our various similarity studies. 
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4. Similarity Relation: The Tolerance Relation 
 
Similarity or resemblance among elements of a set of objects is best analyzed in terms of the 
tolerance relation. For example, if we take the set of five-letter English words and call any two 
words similar if they differ at most by one letter, one can have the following sequence of similar 
words: 
 

 
 

Figure 4. A sequence of similar words, leading from white to black. 
 
 Whereas any two consecutive words in the sequence are similar, it is obvious that distinct 
“similar” neighbors of any word are mutually dissimilar. This arises out of the fact that the 
tolerance relation is not transitive, although it is reflexive and symmetric: 
 
Definition: The relation A on a set M is called tolerance (or tolerance relation) if it is reflexive 
and symmetric.43 
 
 In measuring structural similarity/dissimilarity of chemicals, we first describe the set of 
chemicals (objects) using a prescribed structure space, which consists of molecular descriptors 
characterizing different aspects of molecular structure. A chosen distance function or some 
association coefficient then quantifies the degree of similarity/dissimilarity of a pair of chemicals 
based on its magnitude. As in the case of language given above, one can start with one chemical, 
find its near neighbor, and find, in turn, an analog of the near neighbor based on some selected 
criteria. If one continues the process, it is not difficult to see that at some stage the chosen 
chemical will be structurally quite dissimilar to the one we started with. Then the selected analog 
would serve no purpose in characterizing the neighborhood of the molecule that was our query 
chemical. It is also difficult to say precisely at what point in the analog selection process that will 
happen. 
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Table 1. Theoretical molecular descriptors and brief definitions 

 Topostructural (TS) 
IW

D Information index for the magnitudes of distances between all possible pairs of vertices of a graph 
IW D Mean information index for the magnitude of distance 
W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
ID Degree complexity 
HV Graph vertex complexity 
HD Graph distance complexity 
IC Information content of the distance matrix partitioned by frequency of occurrences of distance h 
M1 A Zagreb group parameter = sum of square of degree over all vertices 
M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring (connected) 

vertices 
hχ Path connectivity index of order h = 0–10 

hχC Cluster connectivity index of order h = 3–6 
hχPC Path-cluster connectivity index of order h = 4–6 
hχCh Chain connectivity index of order h = 3–10 
Ph Number of paths of length h = 0–10 
J Balaban’s J index based on topological distance  

nrings Number of rings in a graph 

ncirc Number of circuits in a graph 
DN2Sy Triplet index from distance matrix, square of graph order (# of non-H atoms), and distance sum; 

operation y = 1–5 
DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y = 1–5 
AS1y Triplet index from adjacency matrix, distance sum, and number 1; operation y = 1–5 
DS1y Triplet index from distance matrix, distance sum, and number 1; operation y = 1–5 
ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1–5 
DSNy Triplet index from distance matrix, distance sum, and graph order; operation y = 1–5 
DN2Ny Triplet index from distance matrix, square of graph order, and graph order; 

operation y = 1–5 
ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1–5 
AN1y Triplet index from adjacency matrix, graph order, and number 1; operation y = 1–5 
ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1–5 
ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1–5 
DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1–5 
ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1–5 

Topochemical (TC) 
O Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled graph 

Oorb Order of neighborhood when ICr reaches its maximum value for the hydrogen-suppressed graph 
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Table 1. Continued—Topochemical (TC) 
Iorb Information content or complexity of the hydrogen-suppressed graph at its maximum 

neighborhood of vertices 
ICr Mean information content or complexity of a graph based on the rth (r = 0–6) order neighborhood 

of vertices in a hydrogen-filled graph 
SICr Structural information content for rth (r = 0–6) order neighborhood of vertices in a hydrogen-

filled graph 
CICr Complementary information content for rth (r = 0–6) order neighborhood of vertices in a 

hydrogen-filled graph 
hχb Bond path connectivity index of order h = 0–6 
hχb

C Bond cluster connectivity index of order h = 3–6 
hχb

Ch Bond chain connectivity index of order h = 3–6 
hχb

PC Bond path-cluster connectivity index of order h = 4–6 
hχv Valence path connectivity index of order h = 0–10 
hχv

C Valence cluster connectivity index of order h = 3–6 
hχv

Ch Valence chain connectivity index of order h = 3–10 
hχv

PC Valence path-cluster connectivity index of order h = 4–6 
JB Balaban’s J index based on bond types 
JX Balaban’s J index based on relative electronegativities 
JY Balaban’s J index based on relative covalent radii 
k0 Kappa zero 
kh Kappa simple indices (h = 1–3) 

ka1-ka3 Kappa alpha indices 
AZVy Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1–5 
AZSy Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1–5 
ASZy Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1–5 
AZNy Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1–5 
ANZy Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1–5 
DSZy Triplet index from distance matrix, distance sum, and atomic number; operation y = 1–5 
DN2Zy Triplet index from distance matrix, square of graph order, and atomic number; 

operation y = 1–5 
nvx Number of non-hydrogen atoms in a molecule 

nelem Number of elements in a molecule  
fw Molecular weight  
hχv Valence path connectivity index of order h = 7–10 

hχv
Ch Valence chain connectivity index of order h = 7–10 

si Shannon information index 
totop Total Topological Index t 
sumI Sum of the intrinsic state values I 

sumdelI Sum of ∆I values  
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Table 1. Continued—Topochemical (TC) 
tets2 Total topological state index based on electrotopological state indices 
phia Flexibility index (k1* k2/nvx)  
IC
D Bonchev-Trinajstić information index 

IC
D Bonchev-Trinajstić information index 

Wp Wiener p 
Pf Platt f 
Wt Total Wiener number 

knotp Difference of chi-cluster-3 and path/cluster-4 
knotpv Valence difference of chi-cluster-3 and path/cluster-4 
nclass Number of classes of topologically (symmetry) equivalent graph vertices 

numHBd Number of hydrogen bond donors 
numwHBd Number of weak hydrogen bond donors 
numHBa Number of hydrogen bond acceptors  
SHCsats E-State of C sp3 bonded to other saturated C atoms 
SHCsatu E-State of C sp3 bonded to unsaturated C atoms 
SHvin E-State of C atoms in the vinyl group, =CH– 
SHtvin E-State of C atoms in the terminal vinyl group, =CH2 
SHavin E-State of C atoms in the vinyl group, =CH–, bonded to an aromatic C 
SHarom E-State of C sp2 which are part of an aromatic system 
SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for –OH, =NH,  

–NH2, –NH–, –SH, and #CH 
SHwHBd Weak hydrogen bond donor index, sum of C–H Hydrogen E-State values for hydrogen atoms on 

a C to which a F and/or Cl are also bonded 
SHHBa Hydrogen bond acceptor index, sum of the E-State values for –OH, =NH,  

–NH2, –NH–, >N–, –O–, –S–, along with –F and –Cl 
Qv General Polarity descriptor  

NHBinty Count of potential internal hydrogen bonders (y = 2–10) 
SHBinty E-State descriptors of potential internal hydrogen bond strength (y =2–10) 

 Electrotopological State index values for atoms types:   
SHsOH, SHdNH, SHsSH, SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax, Hmin, 
Gmin, Hmaxpos, Hminneg, SsLi, SssBe, Sssss,Bem, SssBH ,SsssB, SssssBm, SsCH3, SdCH2, 
SssCH2, StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC, SsNH3p, 
SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN, SddsN, SaasN, 
SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, SsPH2, SssPH, 
SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, SsCl, SsGeH3, 
SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, SsssssAs, SsSeH, SdSe, SssSe, 
SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, 
SsssPbH, SssssPb 
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Figure 5. Five nearest neighbors (analogs), from left to right, for the probe chemicals 
pentafluoro-methoxybenzene and 2,3,5-trimethylhexane selected using Euclidean distance and 
atom pair based similarity spaces. The row above the probe shows analogs selected using the 
Euclidean distance method, while the row below the probe shows analogs selected using the 
atom pair method. 
 
 Examination of the analogs of pentafluoro-methoxybenzene and 2,3,5-trimethylhexane 
presented in Figure 5 attests to the idea that if one looks at the structure of the probe chemical 
and its selected neighbors, one can see a certain amount of intuitive similarity between the 
chemical structures. It is reassuring to see that our intuitive notions of structural similarity are 
upheld by a quantitative method for determining structural similarity. 
 
 
5. Quantitative Molecular Similarity Analysis (QMSA) 
 
Our group has been interested in quantifying the molecular similarity/dissimilarity of chemicals 
using topological descriptors. The impetus for this research comes principally from two 
directions. First, molecular similarity methods provide a way of combining many structural 
features in the ordering of a set of molecules. Second, quantitative molecular similarity methods 
can be used in the quantitative selection of molecular analogs. Molecular analogs are often used 
to estimate the therapeutic/toxic potential of a chemical of interest for the evaluation of 
chemicals for drug discovery and hazard assessment. Often, the features used for such 
comparisons are intuitively selected. We have been interested in developing similarity methods 
that are objective, fast and generally applicable to any chemical species, real or hypothetical. 
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Similarity methods based on topological indices and substructures fall into this category since 
these parameters can be calculated for any arbitrary molecular structure. Similarity methods 
based on experimental data will have limited applicability because in most real world situations 
even the simplest experimental data, e.g., boiling point, melting point, and vapor pressure, are 
not available for the majority of chemicals.44 
 In particular we have used Euclidean distance in a principal component (PC) space derived 
from a large number of indices to quantify intermolecular similarity. Another approach, based on 
a particular type of molecular substructure, called atom pairs (APs), uses a Tanimoto-type 
association coefficient to measure the similarity/dissimilarity of molecules. These techniques 
have been used in the following ways: 1) to define a variety of structure spaces to quantify 
molecular similarity, 2) in the selection of analogs, 3) to carry out comparative studies of spaces 
derived from measured physicochemical properties vis-à-vis topological descriptors, 4) to select 
a number of neighbors of a chemical in various structure spaces to estimate properties of the 
target chemical, and 5) to estimate toxic modes of action (MOA) of chemicals from the MOA of 
neighboring chemicals in different structure spaces. More recently we have developed a new 
approach to the formulation of similarity spaces. This new approach, the tailored similarity 
method, creates similarity spaces optimized for the molecular or biological property of interest. 
The following is a summary of the research already carried out by our group in these areas. 
 
5.1 Databases 
 
We have used a wide variety of data sets and databases over the past fourteen years. Here we 
summarize the data that has been analyzed using a variety of similarity measures. Later, in 
discussing specific studies, we will refer to these databases by number. 
 
5.1.1 TSCA data from ASTER 
This data comes from the ASTER (Assessment Tools for the Evaluation of Risk) database45 
developed by the USEPA from data available in the Toxic Substances Control Act (TSCA) 
Inventory. 
 
5.1.1.1 Normal boiling point (bp) 
Experimental data for the normal boiling points (bp) of 2,926 chemicals were extracted from the 
ASTER system. The full set of 2,926 chemicals was used in the QMSA-based estimation of 
normal boiling point. 
 
5.1.1.2 Normal vapor pressure (log10Pvap) 
Experimental data for normal vapor pressure (Pvap) was used in modeling 469 chemicals. The 
subset used in this study (469 chemicals) represents a chemically diverse set with experimental 
values for Pvap ranging from 3 to 10,000 mmHg. 
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5.1.2 CFC normal boiling point data 
Another set of normal boiling point data was collected from four standard reference texts; 
Beilstein’s Handbuch der Organischen Chemie, the CRC Handbook of Chemistry and Physics, 
Heilbron’s Dictionary of Organic Compounds, and Smith and Srivastava’s Thermodynamic Data 
for Pure Compounds, Part B; for use in several studies by Balaban et al.46,47 This set consisted of 
boiling point data for 276 chlorofluorocarbons (CFCs) with carbon skeletons containing one to 
four atoms. Nine of the compounds included in the studies by Balaban et al. were removed as 
outliers, leaving a total of 267 CFCs. The compounds were judged to be outliers since their 
boiling points were greater than two standard deviations from the mean boiling point for the 
entire set. 
 
5.1.3 Hydrocarbon normal boiling point data 
The hydrocarbon data set used in several of our similarity studies includes 73 alkanes taken from 
Needham et al.,48 29 alkylbenzenes taken from the collection of Mekenyan et al.,49 and 37 
polycyclic aromatic hydrocarbons taken from the collection of Karcher.50 Normal boiling point 
data was taken from the referenced literature for these 139 chemicals. 
 
5.1.4 Octanol/water partition coefficient (logKOW) 
Experimental data for 213 chemicals was used to model octanol/water partition coefficient 
(logKOW). This data represents a small subset of the data comprising the STARLIST data set 
used as the basis for the CLOGP program.51 This subset represents the group of chemicals that 
have no known duplicates within STARLIST, no known errors, experimental logKOW values in 
the range between –2 and 5.5, and zero explicit hydrogen bonding centers as calculated by the 
program HB1.52 
 This subset was chosen to examine the effectiveness of models based on topological 
indices in the prediction of octanol/water partition coefficient for compounds which do not have 
explicit hydrogen-bonding centers and that fall within a well-defined range for experimental 
logKOW values. By well-defined we refer to the findings of Brooke et al.53 and De Brujin et al.54 
demonstrating that the experimental determination of logKOW values greater than 5.5 is 
problematic. 
 
5.1.5 Industrial pollutants 
One interesting data set that has been analyzed in a number of different studies is a set of 76 
industrial chemicals. This set, first analyzed by Basak and Grunwald,55 represents the 
intersection of a subset of the TSCA inventory (~10,000 chemicals), melting point, boiling point, 
and logP data available from the ASTER system,45 and a database of solvatochromic parameters 
consisting of α (hydrogen bond donor acidity), β (hydrogen bond acceptor basicity), V/100 
(molar volume), and π (polarizability). The solvatochromic parameters were provided by 
Kamlet.56 
 



General Papers                                                                                                               ARKIVOC 2006 (ix) 157-210 

ISSN 1424-6376                                                       Page 176                                                                         ©ARKAT 

5.1.6 JP-8 mixture database 
This data set represents a subset of the identified constituents of jet propellant formulation 
number eight (JP-8),57 a set of 166 hydrocarbons. At the time of this study 228 hydrocarbons had 
been identified as constitiuents of the jet propellant used by the United States Armed Forces, not 
including a wide variety of additives. This subset represents the graph distinct molecules for 
which boiling point, vapor pressure, heat of vaporization, water solubility, adsorption coefficient, 
and logP were all available from the ASTER system.45 However, even for the reduced set of 166 
compounds, most of the data values available from ASTER were calculated, not experimental 
values. 
 
5.1.7 Inhibition of complement 
The benzamidines used in this study consist of a group of 107 compounds taken from the 
collection of Hansch and Yoshimoto.58 The data was compiled from the original studies by 
Baker et al.59–62 in which Baker and his students experimentally determined the inhibition of 
guinea pig complement by benzamidines. The data supplied by Hansch and Yoshimoto consisted 
of the measured log(1/C) values, where C is the micromolar concentration for 50 percent 
inhibition of the complement system (IC50). 
 
5.1.8 Inhibition of microsomal p-hydroxylation of aniline 
Experimental data for the inhibition of the microsomal p-hydroxylation of aniline (pIC50) for a 
set of nineteen alcohols was taken from the work of Cohen and Mannering.63 
 
5.1.9 Acute aquatic toxicity 
Data on acute aquatic toxicity –log(LC50) in fathead minnow (Pimephales promelas) was taken 
from the work of Hall, Kier and Phipps.64 Their data was compiled from eight other sources, as 
well as some original work which was conducted at the U.S. Environmental Protection Agency 
(USEPA) Environmental Research Laboratory in Duluth, Minnesota. The set includes data for 69 
benzene derivatives. According to the authors, the set of benzene derivatives was tested using 
methodologies which were comparable to their 96-hour fathead minnow toxicity test system. The 
derivatives chosen for this study have seven different substituent groups that are all present in at 
least six of the molecules. These groups consist of chloro, bromo, nitro, methyl, methoxyl, 
hydroxyl, and amino substituents. 
 
5.1.10 CRC identified carcinogens/noncarcinogens 
A set of 520 compounds was taken from the CRC Handbook of Identified Carcinogens and 
Noncarcinogens: Carcinogenicity-Mutagenicity Database.65 This set consists of 260 mutagens 
and 260 non-mutagens based on qualitative assessments of the Ames’ mutagenicity assay. Please 
see the original manuscript for details.66 
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5.1.11 Aromatic amine mutagenicity 
A set of 127 aromatic and heteroaromatic amines was previously collected from the literature by 
Debnath et al.67 

 
5.1.11.1 Aromatic amine mutagenicity (TA98 + S9) 
Benigni later reanalyzed the work of Debnath et al.67 and assigned positive or negative values for 
the compounds based on their mutagenicity results from the S. typhimurium TA98 + S9 
microsomal preparation.68 This discriminant data was used in modeling mutagenicity. 
  
5.1.11.2 Aromatic amine mutagenicity subset (TA98 + S9) 
From the previously mentioned set of 127 aromatic and heteroaromatic amines, a subset of 95 
compounds was taken. These 95 compounds all have mutagenic potency values greater than zero 
(Rev/nmol > 0) as measured in the S. typhimurium TA 98 + S9 microsomal preparation.67 In this 
study, the quantitative mutagenic potency was modeled. 
 
5.1.11.3 Aromatic amine mutagenicity (TA100) 
Data for this set of compounds tested in S. typhimurium TA100 were also available from the 
work of Debnath et al.67 
 
5.1.12 Nitrosamine mutagenicity 
Mutagenicity data for a set of 15 nitrosamine compounds was taken from the work of McCann et 
al.69 The data available for these 15 compounds was recorded as mutagenic potency (Rev/nmol) 
measured in the Ames assay. 
 
5.1.13 Diverse mutagens and carcinogens 
This data set is a set of 277 chemicals presented by Yamaguchi et al.70 
 
5.1.13.1 Yamaguchi diverse mutagens 
This subset of Yamaguchi’s data is comprised of all of the 277 chemicals that had reported 
results for mutagenicity in the Ames test, mutagenicity in the medium-term liver carcinogenesis 
bioassay, and carcinogenicity in the two-year rodent bioassay in rat and/or mouse. This 
subsetting resulted in a set of 113 chemicals, 68 of which are classified as non-mutagens and 45 
of which are classified as mutagens in the Ames test. 
 
5.1.13.2 Yamaguchi diverse carcinogens 
The Yamaguchi set (mentioned above) has also been used to model carcinogenicity in the two-
year rodent bioassay in rat and/or mouse. The set used for this study is the same 113 chemical 
subset as was used in modeling mutagenicity. However, while the split for mutagenicity was 68 
non-mutagens to 45 mutagens, 34 of the chemicals were classified as non-carcinogens and 79 
were classified as carcinogens in the two-year rodent bioassay. 
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5.1.14 Toxic mode of action 
This database is composed of 283 chemicals selected from the 617-chemical Mid-Continent 
Ecology Division-Duluth fathead minnow database. The entire database has been evaluated for 
toxic mode of action. The compounds selected represent eight modes of action for which higher 
confidence was associated with the final mode classification. See the original study by Basak et 
al.71 and the report on the full database by Russom et al.45 for more specific details on the 
database. 
 
 
6. Arbitrary Similarity Methods 
 
The bulk of our previous work in the field of molecular similarity falls under the heading of 
arbitrary similarity methods. These methods use either molecular substructures or fragments, as 
in the atom pair (AP) method, or topological indices, as in the Euclidean distance method, to 
characterize the overall population of molecules within the data set. In this way, the set itself is 
what we are trying to best characterize with no interest at all in how the property of interest 
relates to the structural data that best characterizes the diversity within the set of molecules. 
 
6.1 Chemical descriptors for QMSA 
 
6.1.1 Atom pairs 
The atom pair approach examines the structure of each chemical and compares chemicals based 
on the presence of identical substructures within each molecule. This approach has proven useful 
in the creation of structure spaces.66,71–83 An atom pair represents any two atoms in the molecule 
and includes information about their path-wise interatomic separation and also encodes the 
presence or absence of π-orbitals. The method of Carhart et al.84 was employed in the calculation 
of atom pairs (APs). This method defines an atom pair as a substructure consisting of two non-
hydrogen atoms i and j and their interatomic separation: 

<atom descriptor i> – <separation> – <atom descriptor j> 
where <atom descriptor> contains information regarding atom type, number of non-hydrogen 
neighbors and the number of π electrons. The interatomic separation is defined as the number of 
atoms traversed in the shortest bond-by-bond path containing both atoms. APProbe85 was used to 
calculate the atom pairs for each molecule and generate the intermolecular similarity scores for 
both sets of compounds. 
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Figure 6. Calculation of atom pairs for ethyl acetate. 
 
 Figure 6 demonstrates the calculation of atom pairs for ethyl acetate. Ethyl acetate has 
fourteen total atom pairs, twelve of which are unique. In figure 6, Xn represents the number of 
non-hydrogen neighbors, “.” represents the one π-electron and C and O are the atomic symbols 
for the atoms in each pairing. The “-k-”, where k = 1–5, are the atomic separation values 
including the starting atom and the ending atom in each pairing. 
 As was mentioned earlier, the atom pair method utilizes a Tanimoto-type coefficient for 
measuring molecular similarity. This associative measure described by Carhart et al.84 is based 
on atom pair descriptors. The measurement is the ratio of the number of shared atom pairs 
between two molecules over the total number of atom pairs present in the two molecules. 
Similarity (S) between molecules i and j is defined as: 

( )jiij TTCS += 2        (11) 

where C is the number of atom pairs common to molecule i and j. Ti and Tj are the total number 
of atom pairs in molecules i and j, respectively. The numerator is multiplied by a factor of 2 to 
reflect the presence of shared atom pairs in both compounds. These similarity scores were also 
calculated using APProbe.85 
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6.1.2 Topological indices 
In constructing structure spaces from topological indices there are many different potential 
approaches, especially given the large number of topological indices currently available. In our 
studies we have used five major approaches to the development of molecular structure spaces. 
The first, and most obvious approach, is to use individual TIs as the dimensions within the 
structure space. However, as noted earlier, with the large number of indices currently available, 
this quickly becomes a problem. We do not really want to use 50- or 100-dimensional structure 
spaces. The fewer indices used in creating the space, the better understanding we will have of the 
aspects of structure being represented in the space. Also, our studies have shown that many of 
the TIs are highly intercorrelated and are therefore not as useful as unique dimensions within a 
structure space. To solve this problem we have used variable clustering86 to form disjoint clusters 
of TIs and have extracted individual TIs from each of the clusters. This approach has been used 
on both large and small data sets76,80,81 and can be further augmented by rescaling the indices so 
that each index has variance equal to one and a mean of zero.76,78,80 
 Another approach to reducing the dimensionality of the TI problem and removing the 
problem of index intercorrelation is to create orthogonal descriptors based on linear 
combinations of the original indices. This has been accomplished using two statistical 
approaches. First, the disjoint clusters resulting from the variable clustering procedure can be 
combined into new, essentially orthogonal variable clusters (VCs).76,78,80 Secondly, a principal 
components analysis (PCA)86 can be used to create linear combinations of indices which form 
truly orthogonal principal components (PCs).8,66,71–83 Since a number of new PCs equal to the 
original number of descriptors is generated, it is necessary to have a standardized approach to 
select a reduced subset of PCs. The standard approach to this problem is to select the PCs with 
eigenvalues greater than or equal to one. This generally retains roughly the first ten percent of 
the PCs. Either approach results in greatly reducing the dimensionality of the structure space and 
avoids the problems caused by highly intercorrelated indices. Both methods have been used in a 
number of our similarity studies. 
 Whether we use TIs, PCs or VCs, we need some means of calculating the intermolecular 
similarity between the chemicals within the data sets. For this approach we have used a standard 
measure of Euclidean distance (ED) within an n-dimensional space. The ED between molecules i 
and j is defined as: 
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where n equals the number of dimensions and Dik equals the data value of the kth dimension for 
compound i. 
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6.1.3 Physicochemical properties vis-à-vis topological descriptors 
The reasoning and chemical intuition developed by most medicinal chemists and toxicologists 
has far more to do with familiarity with physicochemical properties and chemical structures than 
theoretical descriptors. So, it was of interest to see what types of analogs are selected from 
databases based on physicochemical properties vis-à-vis topological descriptors (either selected 
TIs, PCs derived from TIs, or APs). This could only be done on restricted sets of molecules for 
which a suite of experimental property data was available. The primary set that we have 
employed in these studies contains only seventy-six chemicals for which six experimental 
properties, viz., lipophilicity (logKOW), boiling point, melting point, molar volume (V/100), 
hydrogen bond donor acidity (α), hydrogen bond acceptor basicity (β), and polarizability (π*), 
were available.55,72 However, recently we have been able to develop a second database of 166 
hydrocarbons (constituents of JP-8) for which we were able to obtain calculated values for 
boiling point, vapor pressure, heat of vaporization, water solubility, adsorption coefficient, and 
logP.83 These calculated values were all obtained from the USEPA’s ASTER (ASsessment Tools 
for the Evaluation of Risk) system.45 Unfortunately both of these sets are very limited, but this 
serves to illustrate just how difficult it can be to find experimental data for chemicals of 
toxicological interest. 
 Qualitatively, our results on the selection of analogs using physicochemical and 
topological spaces show that for any particular query chemical the selected set of neighbors is 
essentially the same with some minor variation, though the order of neighbor selection differs.55 
So, the physicochemical properties are not expected to give analogs much different from those 
picked by topological methods. However, when we look at the issue quantitatively we see that 
the overlap between theoretical spaces and spaces constructed from physicochemical properties 
is half that shown between similar theoretical models (see Table 2). For instance, when 
comparing the ten nearest neighbors for the industrial pollutant database (see section 5.1.5), the 
PC space derived from TIs and the AP space share an average of five neighbors in common. 
However, the TI and property spaces have an average of 3.5 neighbors in common and the AP 
and property spaces share an average of 4.1 neighbors in common. For further comparison of the 
overlap of theoretical and property spaces see the summary statistics in Table 2. The spaces 
described in the table are a standard atom pair space (AP), a 10-dimensional PC space based on 
topological indices (TI), and a property space based on the seven physicochemical properties 
mentioned above (Prop). The largest variation occurs between the TI space and the Prop space, 
though there are a significant number of unique neighbors selected by all three methods (on 
average more than 50%). Of course, the distinct advantage of topologically-based methods is that 
they can be applied to all chemicals, even those that have not yet been synthesized or tested. 
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Table 2. Average number of identical neighbors selected from three similarity spaces at varying 
levels of K 

K TI vs. AP AP vs. Prop TI vs. Prop 
5 2.3 1.9 1.6 

10 5.0 4.1 3.5 
15 8.1 6.3 5.7 
20 11.0 8.9 8.6 
25 14.3 12.1 11.9 
30 17.4 15.7 15.8 
35 21.1 20.4 20.0 
40 25.5 24.6 25.0 

 
 More recently, we have compared the three similarity spaces discussed above in their 
ability to calculate lipophilicity (logP).83 This was done with both the set of 76 industrial 
pollutants and the 166 JP-8 constituents (see sections 5.1.5 and 5.1.6). Without question, the 
similarity spaces derived from physicochemical property data (experimental or calculated) were 
superior in their ability to estimate logP. The results clearly show that estimation based on spaces 
derived from physicochemical property data is preferable; however, in many cases it is 
impractical. As such, it is reassuring to know that theoretical structure spaces provide reasonable, 
if not ideal, estimates. 
 
6.1.4 Selection of mutually different molecular similarity methods 
Optimal characterization of molecular structure is prerequisite to the creation of useful similarity 
spaces and the prediction of the physicochemical properties, biological activities, or toxicities of 
chemicals for which very little experimental data is available. To this end, we have been 
exploring the creation of a variety of molecular similarity spaces and comparing them to 
determine the extent to which they are similar or different. 
 An early study66 examined the degree of neighborhood overlap between the PC-based 
Euclidean distance method and the AP-based similarity method. This study examined the set of 
139 hydrocarbons (see section 5.1.3), and determined that the two spaces had an approximately 
40% overlap. This research was continued later and in greater depth72 when we looked at the 
degree of overlap between four structure spaces and one physicochemical property space using 
the 76 industrial pollutants (see section 5.1.5). The four structure spaces included principal 
component spaces derived from topostructural indices, topochemical indices, the combined set of 
topostructural and topochemical indices, and an AP-based structure space. The property space 
was a PC space derived from lipophilicity (logKOW), boiling point, melting point, molar volume 
V/100), hydrogen bond donor acidity (α), hydrogen bond acceptor basicity (β), and polarizability 
(π*). This study showed the highest degree of overlap between the topochemical space and the 
space using the combined set of topological indices (Table 2). However, a high degree of overlap 
existed between all four structure spaces, indicating that there is a high degree of similarity 
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between the spaces. The physicochemical property space showed the least overlap with the 
structure spaces. 
 This study resulted in the discovery that for this particular set of compounds, while the 
degree of overlap between the groups of analogs selected by theoretical descriptor spaces is 
relatively high, the similarity space constructed from physicochemical property data provided 
relatively unique groups of analogs with regards to those selected from the theoretically derived 
similarity spaces. This shows that if one is attempting to determine the optimal characterization 
for a similarity space it is best to employ two or three distinct methods, e.g., one theoretical 
space and one property space, rather than two theoretical spaces that may have a high degree of 
overlap. 
 
6.2 Selection of analogs using molecular similarity methods 
 
Due to the constant problem of limited availability of toxicity and other relevant data, risk 
assessment must often be carried out with limited or no experimental data.87 One approach that is 
used in this situation is the selection of chemical analogs to estimate the property of the chemical 
of interest. This use of analogs is based on the tacit assumption that similar chemical structures 
have similar biological activity profiles. Analog selection is generally carried out by an expert 
and as a result is a subjective process, but our research has shown that molecular similarity 
methods can be used to provide a quantitative approach to analog selection.66,73,75,76,88 
Additionally, these methods may quantify aspects of structure that are not perceived by the 
expert and therefore will result in the selection of analogs that would not have been selected by 
the expert. Additionally, these methods provide a rapid means of selecting analogs for a large set 
of chemicals. 
 In our initial studies, we focused mainly on examining the analogs selected by a single 
similarity method (Euclidean distance within an n-dimensional PC-space) to ensure that 
“reasonable” analogs were being selected. To this end, we commonly examined the ten nearest 
neighbors of a selected subset of chemicals to determine how closely related they were to our 
structure of interest (often referred to as a probe chemical).8,75 However, it was of interest to see 
how other methods, AP-based and property-based spaces, performed in analog selection. Also, it 
was necessary to look at analog selection in a variety of similarity spaces to better understand the 
degree of similarity/dissimilarity between the spaces. If a space selects different analogs, it is 
significantly different from another space. See Figures 5 and 7 for examples of analog selection. 
 
6.3 Estimation of properties of chemicals using kNN method 
 
The basic assumption of QSAR/QSPR studies is that similar structures usually have similar 
properties.19 It follows from this idea that we should be able to estimate physicochemical, 
biomedicinal, and toxicological properties of chemicals from the known properties of their 
nearest neighbors in various structure spaces. We have attempted to test this idea using k, 
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ranging between 1 and 25, nearest neighbors of chemicals in structure spaces generated using TIs 
and APs. Here we summarize some results of our research in this area. 
 Similarity spaces derived from topological indices and atom pairs have been used in the 
estimation of a variety of properties: normal boiling point,76,78,80,88 mutagenic potency (lnR),76,78–

80 lipophilicity (logP),78,83 classification of mutagens,66,74 inhibition of microsomal p-
hydroxylation of aniline,82 acute aquatic toxicity,75 and vapor pressure (vide infra). In all cases, 
we have found that molecular similarity methods can provide reasonable estimates for many 
properties. However, these methods also have weaknesses. As we mentioned earlier, the 
similarity relationship is a tolerance relationship; therefore, if we go too far from our probe 
chemical, the ability to acquire reasonable estimates decreases. Similarly, if the similarity space 
is not dense enough, we will be using neighbors that are not very similar to our probe and we 
will have poor estimates. This concept has been shown time and again in our studies. In most 
cases we have found that using four to eight nearest neighbors is ideal for property estimation. 
However, in smaller sets and relatively small, diverse sets, a smaller number of neighbors seems 
to be more desirable.75,78,82 This makes sense, since this represents the cases illustrated above. In 
small, congeneric sets of chemicals, it is likely that minor feature changes will have a fairly 
significant impact on the property of interest and the lack of structural diversity will also impact 
the quality of the estimates. In larger sets, we are more likely to discover sparse pockets that 
must rely on distant neighbors for estimates. Ideally, our similarity space would have a uniform 
distribution both structurally and for the measured values of our property of interest. 
Unfortunately, we have yet to find such a data set. In the meanwhile, it is certainly best to 
explore the neighborhoods within our similarity spaces to find the range of k that best suits the 
space and the property under examination. 
 Another concern with the kNN method is that it results in property smoothing, or loss of 
data variance. As was shown in one of our more recent studies,89 data variance drops off 
dramatically with an increase in k. Therefore, we need to find similarity spaces that best model 
the property of interest with the fewest possible neighbors. Again, this data degredation is 
dependent on the density of the property space. If the property of interest is well distributed 
within the structure space, then variance will degrade more slowly. However, in a structure space 
where the property is poorly distributed, data variance will be lost more quickly. 
 
6.4 Estimation of toxic modes of action (MOA) from neighboring chemicals 
 
Following the structure-property similarity principle, one may argue that similar chemicals 
should have analogous biochemical modes of action (MOA). To test this idea we selected a large 
and structurally diverse set of 283 chemicals (see section 5.1.14) for which MOA of aquatic 
toxicity was known with confidence and estimated their MOA from the MOA of their five 
nearest neighbors.71 The MOA data was classified as follows: narcosis I (baseline narcosis), 
narcosis II (polar narcosis), mixed narcosis I/II, oxidative phosphorylation uncoupling, 
acetylcholinesterase (AchE) inhibition, electrophile/proelectrophile reactivity, and central 
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nervous system effecting chemicals (neurotoxicants and respiratory blockers). kNN estimation, 
as well as neural network and discriminant analysis techniques, were used to attempt to correctly 
classify these chemicals. A tiered analysis was conducted in which narcotic and electrophile 
reactivity classes (narcosis I, narcosis II, mixed narcosis I/II, and electrophile/proelectrophile 
reactivity) were grouped together in the first tier and then classified separately in the second tier. 
The results showed that we could correctly predict MOA for about 90% of the chemicals in tier I 
and 75% of the chemicals in tier II using this method. The results were similar for the other two 
classification methods. 
 
 
7. Tailored Similarity 
 
7.1 Background 
 
The QMSA methods mentioned previously are arbitrary similarity methods because they are 
based solely on structure spaces, the elements of which are selected without considering the 
property (or activity) of interest. Designers of QMSA methods seem to fall into two major 
categories. Some have an intuitive notion of the structural attributes that will be useful for the 
property of interest, while others take a wide variety of structural attributes representing 
important and diverse aspects of molecular structure. In the latter case, because these arbitrary 
structural descriptors encompass such a broad range of important structural features, they are 
expected to be useful in estimating the property of interest through the selection of proper 
analogs. 
 To correct for the arbitrary nature of the QMSA methodology, we have recently developed 
the idea of tailored similarity.90–93 In this scheme we begin by selecting the elements of the 
structure space based on a specific property. The structure space thus created is then used for the 
selection of analogs and estimation of properties of chemicals from their analogs. It has been 
found that both for physicochemical and toxicological properties (using data sets detailed in 
sections 5.1.1.2, 5.1.4, 5.1.5, 5.1.6, and 5.1.11.2), tailored similarity spaces outperform arbitrary 
QMSA models.  
 
7.2 Tailored QMSA methods 
 
Currently the tailored similarity method has only been used with topological indices. The TIs can 
be used individually or combined into orthogonal descriptors using PCA as described previously. 
The main difference between tailored and arbitrary similarity comes with the selection of 
descriptors. While arbitrary methods use techniques that select descriptors that best characterize 
the variance in the descriptor set, thus optimally characterizing the available structure space, the 
tailored method uses ridge regression (RR) to choose a subset of descriptors optimal for the 
property of interest. The ridge regression method is useful in cases where the descriptors are 
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highly multicollinear and where the number of descriptors is substantially larger than the number 
of observations.94 Conceptually, RR can be thought of as recasting the regression as one using 
the principal components of the predictor variables as new predictors. It differs in that in 
principal component regression the leading components are retained and used just as in ordinary 
least squares regression while the trailing components are dropped. RR retains all components, 
but downweights each of them in accordance with the component’s eigenvalue and the “ridging 
constant” k. 
 The ridge parameter k controls the amount of smoothing in ridge regression. If k is large, 
then all regression coefficients are “shrunk” towards zero. Smaller k values shrink the directions 
of small eigenvalues substantially, but the directions with large eigenvalues less so. A suitable 
value for k needs to be found when performing ridge regression. In the current study, the k value 
was chosen to minimize the prediction sum of squares (PRESS), a cross-validation measure. As 
in jack-knifing, each compound in turn is temporarily omitted from the data set and the RR fitted 
to the remaining compounds. The resulting model is used to predict the compound that was held 
back. PRESS is the sum of squares of the differences between the actual values and these 
holdout predictions. The cross-validated R2 is defined in terms of PRESS and provides an honest 
measure of the predictive power of the modeling approach. 
 Once a set of descriptors is chosen based on the ridge parameter k, the Euclidean distance 
method is used to determine the degree of similarity between all pairs of chemicals within the n-
dimensional space. 
 
Table 3. Summary of the first twelve principal components derived from a set of 222 topological 
indices calculated for a set of 166 JP-8 constituents 

PC Eigenvalue 

Proportion of 
Variance 
Explained 

Cumulative 
Variance 
Explained 

First Most Correlated 
TI 

Second Most 
Correlated TI 

1 107.93 0.417 0.417 AZN3 0.99392 P0 0.9937 
2 25.87 0.100 0.517 ASN2 0.86895 DSN5 0.86148 
3 18.85 0.073 0.589 ∆0χ 0.91315 ncirc 0.85846 
4 12.55 0.049 0.638 sumDELI 0.74373 IC1 0.69717 
5 8.76 0.034 0.672 ANZ1 0.62465 Fw 0.56555 
6 7.79 0.030 0.702 7χ 0.51019 8χ 0.48020 
7 6.08 0.024 0.725 dxp8 0.53116 8χ 0.52996 
8 5.61 0.022 0.747 SHHBd 0.49222 numHBd 0.48906 
9 5.18 0.020 0.767 SHHBd 0.55899 numHBd 0.54654 
10 4.11 0.016 0.783 4χCh 0.77510 3χCh 0.76064 
11 3.86 0.015 0.798 5χv 0.42878 ∆7χ 0.37443 
12 3.55 0.014 0.812 SHwHBd 0.52762 SHCHnX 0.52237 
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 The example of the tailored similarity method presented here uses the TSCA normal vapor 
pressure database (see section 5.1.1.2). In the construction of the similarity spaces to model 
normal vapor pressure, our standard method has been altered slightly. Normally we would keep 
all PCs with eigenvalues greater than or equal to one. However, in this instance the number of 
PCs meeting this requirement was rather high due to the diversity of descriptors and the diversity 
of the database. If we kept all PCs with eigenvalues greater than or equal to one, we would have 
a 32-dimensional similarity space. Since this seems a bit high, we have decided to use the PCs 
with eigenvalues greater than or equal to three. This leaves a set of twelve PCs, derived from a 
set of 277 molecular descriptors, that explain approximately 81% of the variance in the 
descriptor set (see Table 3). Since we have retained the first twelve PCs, we will also retain the 
twelve highest ranked TIs from the RR procedure (Table 4). In each instance, we have then 
proceeded to create twelve-dimensional structural similarity spaces using the Euclidean distance 
method described earlier. 
 
Table 4. Twelve TIs selected by RR for the 467 TSCA vapor pressure set. Indices common to 
both RR and PCs are indicated in bold. 

 
 

TIs from RR 
(t-value) 

1 SsF (9.55) 
2 SssO (7.17) 
3 NHBint3 (-6.89) 
4 P0 (-6.59) 
5 SsNH2 (6.59) 
6 IC0 (-6.55) 
7 SHHBa (6.55) 
8 SHBint3 (6.41) 
9 nelem (-5.98) 

10 DN2N3 (-5.96) 
11 DN214 (-5.84) 
12 DN2N4 (-5.84) 

 
7.3 Analog selection by tailored versus arbitrary QMSA methods 
 
Any method that develops a unique similarity space should also result in the selection of a 
unique set of chemical analogs for any probe (query) chemical. Unless we hope to find unique, 
non-intuitive analogs, it should also be easy to see some structural resemblance between the 
probe chemical and its analogs. As a further example of this, we present the analogs of 1,1-
dichloroacetylmethoxide as selected by the standard arbitrary similarity method using Euclidean 
distance and the tailored similarity method using Euclidean distance. As can be seen in Figure 7, 
there is minimal overlap between the structures selected by the arbitrary and tailored similarity 
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methods, however, most of the analogs show noticeable similarity to the probe compound (1,1-
dichloroacetylmethoxide). 
 

 
 
Figure 7. Chemical analogs of 1,1-dichloroacetyl methoxide as selected from the TSCA Vapor 
Pressure data set by arbitrary and tailored similarity methods. The analogs selected using the 
arbitrary method are in the left column and those selected using the tailored similarity method 
are on the right. 
 
7.4 kNN property estimation: Tailored versus arbitrary QMSA methods 
 
It is also important that our quantitative molecular similarity method show some degree of utility 
in property estimation. To that end we have employed the kNN method to estimate normal vapor 
pressure within our arbitrary and tailored similarity spaces. In both cases we have used sets of 
analogs (or neighbors) with k varying from one to ten and at the intervals fifteen, twenty and 
twenty-five. While the use of fifteen, twenty or twenty-five neighbors is not useful due to the 
high loss of data variance (as mentioned earlier), it is still informative to look at these sets of 
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neighbors as they give us some indication of the density of the property distribution within our 
structure space. If the correlation coefficient drops off rapidly, it is necessarily the result of 
selecting neighbors whose measured property values are significantly different from those of the 
probe chemical. In this case either our chemical space is too sparse or it is not a good space for 
modeling the property of interest. 
 The results for the two similarity spaces are presented in Figures 8 and 9. It is interesting to 
note that the curves for the arbitrary and tailored similarity spaces appear almost identical, while 
the correlation coefficient (R) for the tailored similarity space remains about three-one-
hundredths above the value for the arbitrary space. An identical trend is found on the plot of 
standard error (s.e.) versus k (Figure 9). The best model using tailored similarity uses the four 
nearest neighbors. This model has the highest correlation coefficient (R = 0.884) and the lowest 
standard error (s.e. = 0.346) of all of the models. Figure 10 presents a scatterplot of estimated 
versus experimental values for normal vapor pressure for the set of 469 chemicals. 
 

 
 
Figure 8. Plot of correlation coefficient (R) versus k-nearest neighbors (k = 1–10, 15, 20, 25) for 
modeling normal vapor pressure using arbitrary and tailored similarity methods. 
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Figure 9. Plot of standard error (s.e.) versus k-nearest neighbors (k = 1–10, 15, 20, 25) for 
modeling normal vapor pressure using arbitrary and tailored similarity methods. 
 

 
 

Figure 10. Plot of experimental versus estimated normal vapor pressure for 469 TSCA 
chemicals using the 4-nearest neighbors selected using the tailored similarity method. 
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8. Molecular Dissimilarity in Clustering of Databases 
 
8.1 Background 
 
In addition to the selection of analogs and property estimation, similarity spaces can be used in 
cluster-analysis. This technique assesses the molecular similarity and examines the distances 
between molecules within the similarity space to form clusters of related compounds. The 
clusters are formed around a central point, the centroid, and have a set radius based on the 
molecular density around the centroid. The distance from the cluster centroid to any compound 
within that cluster can be measured, telling us which compounds are nearest the centroid and 
which compounds are furthest away. This type of study is useful in scanning large real or virtual 
chemical libraries in looking for new pharmaceutical leads or for other testing problems in which 
the number of compounds is simply too large, and therefore it is too expensive, to subject the 
entire set to proper toxicological screening. In this situation, representatives from each of the 
clusters can be tested on the assumption that since the compounds within each cluster are similar, 
their properties should also be similar. 
 In the field of toxicology, there are a great many situations where there is a need to respond 
to the toxicity profiles of complex mixtures when the corresponding toxicity data for the 
individual components are not available. In this case, one can use clustering to find related 
groups of chemicals and to identify the major component types in the mixture. In this way, if our 
assumption that similar chemicals are clustered together and since they are structurally similar 
they should also exhibit similar properties, then our clusters should be fairly homogeneous in 
terms of their activity and toxicity profiles. In essence, if the clusters are small enough, we could 
consider the chemicals within the cluster to be the same. In this way, we can narrow down the 
number of chemicals which need to tested to determine the true culprits in mixture toxicity. In 
other words, if we have twelve well-characterized clusters we can select the chemical closest to 
the centroid as being representative of the cluster and test 12! mixtures rather than 120! or more. 
For example, there are more than 228 identified components of JP-8, the jet fuel mixture in 
widespread use by the United States Armed Forces. This complex fuel mixture has been shown 
to cause skin irritation, immunosuppression, and systemic toxicity.95 If we were to test all 
possible mixtures of known JP-8 chemicals, then we would have to test 228! mixtures. However, 
if we can successfully cluster the JP-8 constituents into 15 or 20 well-defined clusters, then we 
have greatly reduced the complexity and the cost, in both time and resources, to evaluate the 
toxicity of JP-8. 
 Another important application of clustering is in pharmaceutical drug design. During the 
discovery portion of pharmaceutical research and development, a prohibitively large set of 
chemicals is generally available as candidates for screening.96 In such a situation, testing all 
compounds exhaustively is not practical. Dissimilarity methods (clustering methods based on TIs 
or APs) provide a useful means to select a limited subset of “structurally dissimilar” chemicals 
from the library of drug-like molecules for testing. Lajiness used such method based on PCs 
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derived from POLLY with tremendous success in drug design.96 Whereas combinatorial 
chemistry leads to an “explosion” in the number of molecular species, clustering can be used to 
reduce the size of the problem to a manageable level.  
 
8.2 Clustering of JP-8 chemicals 
 
JP-8 is a complex fuel mixture of many chemicals. One report claims to have characterized 228 
distinct chemicals in this mixture, while others claim to have characterized over 1,000 distinct 
chemicals. And, as was stated earlier, this complex fuel mixture has been shown to have toxic 
effects on the skin, immune system, and the whole organism. To fully understand the toxicology 
of JP-8, one would need to carry out experiments on all binary, ternary, quaternary, …, n-nary 
mixtures of the constituents forming the “chemical soup” that is JP-8. This is a combinatorial 
explosion of 228! (or, in the worst case, 1000!) possible candidate mixtures to be tested 
experimentally. 
 In examining the JP-8 database, we have used a reduced subset consisting of the 194 
topologically distinct chemicals present within the larger set of 228 JP-8 constituents. Even in 
this reduced set, in order to ascertain which particular component or which mixture of 
components is responsible for the toxic effects, one needs to carry out toxicological evaluations 
of the 194! possible mixtures of JP-8 constituents. This is impractical and would be terribly 
costly. The goal of our approach of clustering the chemicals is to decrease the amount of 
laboratory testing necessary for JP-8 chemicals. The idea is that properly selected clusters will 
have chemically (and hopefully toxicologically) similar chemicals in the each cluster. 
 The problem that rears its ugly head is the choice of properties on which to base the 
clustering. A search of the ASTER database of USEPA shows that very few of the JP-8 
constituents have measured property values for even common properties such as boiling point, 
vapor pressure, melting point, or lipophilicity. So, clustering based on experimental data is not 
feasible at this time. Given this situation we decided to use theoretical molecular descriptors 
(TIs) computed by POLLY to cluster the JP-8 chemicals. 
 We clustered the JP-8 constituents into a set of seven clusters derived from a set of 94 TIs 
calculated by POLLY v2.3. The name and structure of the chemical closest to the centroid of each 
of the seven clusters is presented in Figure 11. One chemical, or a limited number of properly 
chosen chemicals, from each cluster can make the experimental situation much more manageable 
to the laboratory toxicologist. Table 5 presents the names of the 194 JP-8 constituents grouped 
into the 7 clusters and sorted by their abundance in the JP-8 mixture. This clustering has also 
been done using a physicochemical property space and an AP-based structure space. Due to the 
lack of toxicological data, we have not been able to investigate whether molecules in the same 
cluster also have similar toxicity profiles. Such studies can be attempted as more experimental 
data on toxicity and toxic mode of action (MOA) become available. 
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Figure 11. Chemical structures of the JP-8 constituents closest to the center of each cluster for 
the seven clusters listed in Table 5. 
 
 The objective of the JP-8 clustering study was to see whether we could decompose the 
large set of 194 chemicals into structurally (and hopefully) toxicologically distinct groups. As 
was stated earlier, the functional homogeneity of the chemicals belonging to the same cluster 
cannot be verified at this stage owing to the lack of toxicological test data. A perusal of the 
structures in the various clusters would indicate that chemicals in the same cluster are more 
similar to one another structurally as compared to those chosen from different clusters. For 
example, Cluster 1 contains fluorene, pyrene, anthracene, and methanthracene, all large, fused-
ring systems; Cluster 2 contains four to eight carbon alkanes that show a fairly high-degree of 
branching; Cluster 3 consists of bicyclic compounds, primarily napthalene derivatives; and 
Cluster 4 consists of single ring compounds. Clusters 5 and 6 are a little harder to classify as the 
mixture of alkanes and alkenes becomes a little less intuitive, but we see that Cluster 7 is also 
fairly well-characterized as a group of substituted benzene derivatives. While, as was mentioned 
before, we cannot verify the toxicological relevance of this clustering, the structural aspect of the 
clustering does seem to be well-defined. 
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Table 5. 194 JP-8 constituents grouped into seven clusters. The chemicals are ranked within 
each cluster by their average concentration within the fuel mixture and the distance from each 
compound to the cluster centroid is noted 

Cluster Chemical name Avg. Conc. Distance
1 fluorene 27.5 1.229
1 pyrene 0.1 1.909
1 9-methylanthracene 0.1 0.645
1 ISTD (d10-anthracene) 0.0 1.011
2 3,3- or 2,5-dimethylheptane 1570.0 1.840
2 2,3,3,4-tetramethylpentane 1370.0 2.274
2 3,3-diethylpentane 703.0 1.714
2 2,2,4,4-tetramethylpentane 353.0 2.858
2 2,4-dimethyl-3-ethylpentane 147.0 1.611
2 4,4-dimethylheptane 141.0 1.520
2 2,4-dimethylhexane 126.0 1.594
2 2,3,4-trimethylhexane 114.0 1.541
2 2,3,3-trimethyl-1-butene 96.0 2.640
2 3,3-dimethylhexane 51.3 0.818
2 3,4-dimethylhexane 46.5 1.084
2 2,2,3-trimethylhexane 42.5 1.508
2 2,4,4-trimethylhexane 36.8 1.531
2 3,3-dimethylpentane 21.4 1.714
2 2,3,4-trimethylpentane 20.5 0.976
2 3-ethylpentane 19.0 2.325
2 2,2,3,3-tetramethylpentane 12.6 2.750
2 2,2,3-trimethylbutane 12.4 2.689
2 2,2-dimethylhexane 11.7 1.596
2 iso-octane 9.8 1.461
2 2,3,3-trimethylpentane 9.2 1.280
2 2,4,4-trimethyl-2-pentene 6.9 1.539
2 2,2,4-trimethylhexane 5.5 1.727
2 2,3,3-trimethyl-1,4-pentadiene 4.2 1.529
2 t-3,4,4-trimethyl-2-pentene 3.9 0.837
3 1-methylnaphthalene 3590.0 1.401
3 2-methylnaphthalene 2980.0 1.535
3 naphthalene 2140.0 2.698
3 2,6-dimethylnaphthalene 923.0 0.762
3 1,1'-biphenyl 542.0 1.872
3 2-ethylnaphthalene 455.0 1.363
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Table 5. Continued  
Cluster Chemical name Avg. Conc. Distance

3 cyclohexylbenzene 387.0 1.403
3 1,2-dimethylnaphthalene 204.0 1.031
3 1,5-dimethylnaphthalene 194.0 0.791
3 1,4-dimethylnaphthalene 191.0 0.814
3 2,3-dimethylnaphthalene 145.0 0.634
3 1,1,6-trimethyltetralin 122.0 2.303
3 1-ethylnaphthalene 119.0 1.267
3 dicyclopentadiene 4.3 2.669
3 1,8-dimethylnaphthalene 2.2 0.911
3 1,3,5-triisopropylbenzene 0.4 3.850
3 hexaethylbenzene 0.2 4.270
4 1,2,4-trimethylbenzene 12300.0 1.830
4 1,2,3-trimethylbenzene 5660.0 1.677
4 1,3,5-trimethylbenzene 4270.0 1.838
4 3-ethyl-2-methylheptane 3260.0 1.733
4 1,1,3-trimethylcyclopentane 2210.0 2.057
4 c-1,2,3-trimethylcyclohexane 2050.0 1.303
4 1,2,4,5-tetramethylbenzene 1950.0 1.984
4 1,2,4-trimethylcyclohexane 1860.0 1.357
4 c-1,3-dimethylcyclohexane 1630.0 1.417
4 1-ethyl-1-methylcyclohexane 840.0 1.194
4 2,2,5,5-tetramethylhexane 474.0 3.034
4 c-1,2-dimethylcyclohexane 440.0 1.386
4 c-1,4-dimethylcyclohexane 327.0 1.658
4 3,4-diethylhexane 302.0 2.387
4 c,t,c-1,2,3-trimethylcyclopentane 192.0 1.287
4 c,c,t-1,2,3-trimethylcyclohexane 175.0 1.303
4 1,3,5-trimethylcyclohexane 115.0 1.253
4 c,c,c-1,3,5-trimethylcyclohexane 113.0 1.253
4 c,c,t-1,3,5-trimethylcyclohexane 91.8 1.253
4 3,5,5-trimethylcyclohexene 65.8 1.166
4 t-1,1,3,4-tetramethylcyclopentane 35.3 1.819
4 1-ethyl-1-methylcyclopentane 20.6 1.315
4 t-1,1,3,5-tetramethylcyclohexane 15.8 2.066
4 2,2,4,6,6-pentamethylheptane 12.1 2.872
4 3,3,5-trimethylcyclohexene 9.0 1.150
4 3,3,5-trimethylheptane 4.9 1.757
4 1,1,3,3-tetramethylcyclopentane 3.8 2.698
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Table 5. Continued  
Cluster Chemical name Avg. Conc. Distance

4 3,4,5-trimethylheptane 3.6 1.802
4 1,3,5,5-tetramethyl-1,3-cyclohexadiene 1.3 1.757
5 n-decane 33700.0 2.308
5 n-nonane 18400.0 1.618
5 4-methylnonane 6410.0 1.575
5 m & p-xylenes (co-eluting) 6050.0 1.805
5 3-methylnonane 6050.0 1.695
5 2,6-dimethyloctane 5960.0 1.632
5 n-octane 5050.0 1.461
5 3-methyloctane 4160.0 0.824
5 ethylcyclohexane 4150.0 1.611
5 o-xylene 3450.0 1.764
5 3,6-dimethyloctane 2910.0 1.626
5 3,5-dimethyloctane 2900.0 1.734
5 4-methyloctane 1980.0 0.740
5 5-methylnonane 1940.0 1.489
5 2,7-dimethyloctane 1840.0 1.982
5 toluene 1750.0 1.966
5 n-heptane 1700.0 2.113
5 2,3-dimethylheptane 1570.0 1.323
5 2-methylheptane 1490.0 1.017
5 2,6-dimethylheptane 1330.0 1.492
5 3-ethyloctane 1270.0 1.434
5 ethylbenzene 1270.0 1.667
5 2,3-dimethyloctane 1220.0 1.745
5 4-ethyloctane 1180.0 1.439
5 3-heptene 1170.0 2.249
5 4-methylheptane 1050.0 1.176
5 1-nonene 712.0 1.587
5 3-ethylhexane 620.0 1.596
5 3,4-dimethylheptane 536.0 1.727
5 3-methylheptane 502.0 1.086
5 2,4-dimethylheptane 356.0 1.338
5 2-methylhexane 285.0 2.086
5 benzene 270.0 4.275
5 4-ethylheptane 261.0 1.069
5 1-decene 259.0 2.225
5 propylcyclopentane 118.0 1.412
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Table 5. Continued  
Cluster Chemical name Avg. Conc. Distance

5 1-heptene 115.0 2.239
5 4-nonene 56.4 1.589
5 t-1,3-dimethylcyclopentane 44.6 2.247
5 2-ethyl-1-hexene 29.7 1.209
5 2-octene 27.5 1.509
5 4-methylcyclohexene 6.7 1.827
5 2,5-dimethylhexane 6.6 2.087
5 3,3- or 2,5-dimethylheptane 0.0 1.109
5 m- & p-xylenes (co-eluting) 0.0 1.995
6 n-undecane 28800.0 2.672
6 n-dodecane 27200.0 1.943
6 n-tridecane 26000.0 1.450
6 n-tetradecane 16800.0 1.224
6 2,6-dimethylundecane 10700.0 1.678
6 n-pentadecane 7170.0 1.317
6 2,6,10-trimethyldodecane 5020.0 1.816
6 n-hexadecane 2390.0 1.578
6 2,6,11-trimethyldodecane 1860.0 1.662
6 heptylcyclohexane 1660.0 1.348
6 n-pentylbenzene 621.0 2.196
6 n-hexylbenzene 550.0 1.638
6 1-undecene 490.0 2.755
6 1-dodecene 473.0 1.978
6 1-tridecene 303.0 1.400
6 n-heptylbenzene 273.0 1.361
6 2,6,10,14-tetramethylpentadecane(pristan) 180.0 3.245
6 n-octylbenzene 109.0 1.396
6 cyclododecane 39.5 4.016
6 1-tetradecene 36.7 1.053
6 n-nonylbenzene 25.7 1.592
6 1-hexadecene 25.0 1.322
6 2,6,11,15-tetramethylhexadecane 8.8 3.497
6 n-decylbenzene 5.3 1.863
6 1-phenyltridecane 1.0 2.882
7 2-methyldecane 9020.0 2.679
7 3-methyldecane 8470.0 2.395
7 butylcyclohexane 6880.0 1.825
7 4-methyldecane 6100.0 2.222
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Table 5. Continued  
Cluster Chemical name Avg. Conc. Distance

7 indane (2,3-dihydro-1H-indene) 4050.0 2.281
7 n-propylcyclohexane 4030.0 1.643
7 1-ethyl-3-methylbenzene 3590.0 1.844
7 1-ethyl-4-methylbenzene 3150.0 1.833
7 1-ethyl-2-methylbenzene 2750.0 1.571
7 isopropylcyclohexane 2740.0 1.579
7 1-ethyl-3,5-dimethylbenzene 2730.0 1.114
7 1-ethyl-2,4-dimethylbenzene 2680.0 0.958
7 2,2,3-trimethyldecane 2670.0 2.939
7 1-propyl-2-methylbenzene 2570.0 1.182
7 1-ethyl-3,4-dimethylbenzene 2140.0 1.178
7 1-isopropyl-4-methylbenzene 2100.0 1.109
7 1,2,3,5-tetramethylbenzene 2040.0 1.639
7 propylbenzene 1950.0 1.933
7 1,2,3,4-tetramethylbenzene 1810.0 1.741
7 1-ethyl-2,5-dimethylbenzene 1720.0 0.874
7 t-butylbenzene 1520.0 1.570
7 isopropylbenzene 1450.0 1.644
7 1,3-diethylbenzene 1430.0 0.879
7 1,2-dimethyl-3-ethylbenzene 1400.0 0.947
7 1-isopropyl-3-methylbenzene 1250.0 1.057
7 1-propyl-4-methylbenzene 1200.0 1.012
7 butylbenzene 1080.0 1.915
7 sec-butylbenzene 832.0 0.841
7 1,4-diethylbenzene 648.0 1.538
7 1,2-diethylbenzene 576.0 0.951
7 1,3,5-triethylbenzene 541.0 1.926
7 2-ethyl-1,3-dimethylbenzene 505.0 0.954
7 isobutylbenzene 458.0 1.215
7 (1-ethylpropyl-)-benzene 399.0 1.046
7 1-ethyl-3-isopropylbenzene 352.0 0.891
7 1-isopropyl-2-methylbenzene 261.0 0.810
7 (1,2-dimethylpropyl-)-benzene 260.0 1.086
7 sec-pentylbenzene 253.0 1.373
7 (3-methylbutyl-)-benzene 242.0 2.018
7 (2-methylbutyl-)-benzene 131.0 1.631
7 1-isopropyl-4-methylcyclohexane 89.4 1.633
7 1-t-butyl-3-methylbenzene 39.2 1.812
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Table 5. Continued  
Cluster Chemical name Avg. Conc. Distance

7 1,2-diisopropylbenzene 22.2 2.448
7 (1,1-diethylpropyl-)-benzene 22.1 2.884
7 1-t-butyl-3,4,5-trimethylbenzene 20.2 3.304
7 1-t-butyl-3,5-dimethylbenzene 17.2 2.544
7 1,4-diisopropylbenzene 14.4 2.242
7 neopentylbenzene 14.1 1.734
7 3,7,7-trimethylbicyclo(4.1.0)-3-heptene 10.7 3.221

 
 Clustering of JP-8 chemicals mentioned above was carried out using arbitrary similarity 
spaces. A tailored space could not be derived because of the lack of test data. Tailored spaces 
based on toxicity data and toxicologically relevant properties might lead to clustering relevant to 
the hazard assessment of JP-8. 
 
8.3 Psoralen studies 
 
More recently, we developed a large virtual library of nearly 250,000 psoralen derivatives97 to 
show the utility of the combinatorial-cum-clustering method in practical drug design. We created 
a virtual library of 248,832 psoralen derivatives and clustered them. Figure 12 shows the 
psoralen skeleton, the substitution points, and the twelve substituent groups used in the creation 
of this virtual library. These structures were grouped into a limited number of clusters (15, 20, 
and 25) and the clusters were examined. Table 6 lists the 25 clusters and presents the number of 
compounds  in each  cluster along  with the minimum and maximum  distance from  the  centroid 
within each of the clusters. The compounds closest to the centroid of each cluster are 
summarized in Table 7. This technique allows for the selection of a small number of compounds, 
representative of each of the clusters, to form a manageable subset for costly laboratory testing. 
One can choose either the chemical closest to the centroid of each cluster or some small subset 
from each cluster as representative of the cluster. In this way, one can test a smaller number of 
chemicals as compared to the large set of nearly 250,000 psoralen derivatives and examine the 
potential of the large set of structures. Whereas combinatorial chemistry leads to an “explosion” 
in the number of candidate chemicals, clustering can be used to bring the number of candidate 
chemicals down to a manageable level. 
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Figure 12. Structural skeleton of psoralen with five possible substitution points identified and 
the 12 substituents used to generate a virtual library of 248,832 psoralen derivatives. 
 
Table 6. Minimum distance and maximum distance to cluster center and cluster  size 

Cluster Minimum Distance Maximum Distance N 
1 1.83 7.57 47 
2 1.31 8.43 9484 
3 1.25 11.69 1085 
4 1.99 8.34 2141 
5 0.95 8.44 1303 
6 1.15 8.45 31756 
7 3.13 8.32 393 
8 1.72 7.48 8072 
9 2.57 9.94 249 
10 0.93 9.54 6297 
11 1.73 9.65 3497 
12 0.92 9.57 8780 
13 0.43 9.28 38286 
14 2.77 7.70 950 
15 0.69 10.38 31526 
16 1.87 7.58 720 
17 1.07 9.03 20907 
18 0.70 11.90 7186 
19 0.86 10.20 7391 
20 1.95 9.85 11320 
21 1.47 10.53 5346 
22 1.09 9.22 36661 
23 1.19 8.61 7906 
24 2.09 8.47 1605 
25 0.97 10.19 5924 
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Table 7. Substituents at each position for the chemical closest to cluster center 

Cluster a b c d e 
1 –H –H –H –H –Cl 
2 –N+(CH3)3 –OCH3 –CHOC6H6 –N+(CH3)3 –CN 
3 –SO3– –N+(CH3)3 –N+(CH3)3 –N+(CH3)3 –C6H6 
4 –C6H6 –H –Cl –H –CH3 
5 –H –H –CN –N+(CH3)3 –N+(CH3)3 
6 –N+(CH3)3 –SO3– –OCH3 –CN –OCH3 
7 –H –H –H –CN –N+(CH3)3 
8 –CH3 –CO2– –CO2– –Cl –H 
9 –N+(CH3)3 –H –H –N+(CH3)3 –N(CH3)2 
10 –CHOC6H6 –CH3 –H –CHOC6H6 –CO2– 
11 –C6H6 –CHOC6H6 –C6H6 –CHOC6H6 –SO3– 
12 –Cl –H –CH3 –CHOC6H6 –OCH3 
13 –SO2NH2 –SO3– –C6H6 –CH3 –N(CH3)2 
14 –CN –OCH3 –H –Cl –H 
15 –N(CH3)2 –CHOC6H6 –CHOC6H6 –H –SO3– 
16 –CN –CH3 –H –H –CH3 
17 –OCH3 –CHOC6H6 –Cl –OCH3 –OCH3 
18 –N+(CH3)3 –SO2NH2 –N(CH3)2 –N+(CH3)3 –H 
19 –N+(CH3)3 –SO2NH2 –H –C6H6 –CN 
20 –SO2NH2 –SO2NH2 –N(CH3)2 –N+(CH3)3 –SO2NH2 
21 –CO2– –H –CH3 –Cl –SO2NH2 
22 –CO2– –OCH3 –CH3 –CO2– –SO3– 
23 –CH3 –CO2– –CH3 –H –N(CH3)2 
24 –N(CH3)2 –N(CH3)2 –N(CH3)2 –CO2– –N(CH3)2 
25 –CN –CN –H –N+(CH3)3 –CN 

 
 
9. Similarity in the Post-Genomic Era 
 
We usually compute similarity of chemicals in terms of calculated descriptors, the main reason 
being that they are available for any arbitrary chemical species. But physical properties and 
biological test data can also be used for this purpose, if available. In this post-genomic era, large 
sets of data on effects of drugs and toxicants on the genome and proteome are gradually 
becoming available. Such data can add context-specific information in computing the 
similarity/dissimilarity of chemicals for certain purposes. In particular, our Natural Resources 
Research Institute team and collaborators have been involved in developing compact descriptors 
for DNA sequences and proteomics patterns which, in analogy with calculated chemodescriptors, 
describe biological molecules or systems such as DNA sequences or the patterns of distribution 
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of proteins in the 3-D gels. It is tempting to speculate that such “biodescriptors” will find 
application in SAR studies and similarity/dissimilarity analyses of molecular systems and 
provide new insight about their biological action. 
 
 
10. Discussion and Conclusions 
 
In this paper we have reviewed results of QMSA studies carried out by our research team during 
the past fifteen years. Most of the similarity measures are based on algorithmically-derived 
parameters. We have carried out some limited number of studies in which property-based and 
structure-based QMSA methods have been compared. The arbitrary property-based methods 
seem to select “better” analogs and give superior activity estimates as compared to arbitrary 
structure-based QMSA methods. Further studies are needed in this area with large data sets and 
more diverse properties before any definite conclusions can be made in this matter. 
 As has been mentioned previously, our research has shown repeatedly that a small set of 
nearest neighbors (generally 3 to 8 structural analogs) provides the best property estimates for a 
given probe chemical.66,76–80,88–90 In addition, in a recent study we have shown the danger of 
using too many neighbors, especially in small (fewer than 200 chemical) data sets, though our 
study showed similar problems for a database of 469 chemicals.89 Using too many neighbors 
decreases the over-all variance in the data, with a potential for marginalizing the predictions and 
under-predicting highly active chemicals (or over-predicting chemicals of low activity). So 
again, it is best to stay with relatively small sets of neighbors, somewhere between 3–8. See our 
2001 study in the Journal of Molecular Graphics and Modelling for more details.89 
 A new addition in the QMSA arena is tailored similarity, a novel approach where context 
or property-specific descriptors are used to create a structure space for the computation of 
intermolecular similarity. Our limited experience in this area shows that this method holds great 
promise for application to chemical domains relevant to drug design and the hazard assessment 
of chemicals.90–93 However, much work remains to be done in validating this methodology. Also, 
techinques are needed to identify the domain of applicability of the similarity space. As with all 
similarity spaces, the user must be cautious when adding new, unknown chemicals to the space. 
Those that fall beyond the bounds of the chemicals currently within the structure space are easily 
identified by descriptor values outside the ranges for those descriptors within the data set 
analyzed. However, the user must also remember that the outer bounds of the structure domain 
are likely to be sparsely populated, and predictions for chemicals along these outer “edges” of 
the space will be biased, since neighbors will not be evenly distributed around the probe 
compound. If we consider the prediction space to be a perfect sphere, with hundreds of points 
evenly distributed within that sphere, a point that lies well within the area of the sphere will be 
surrounded by evenly distributed points to a certain distance less than the radius of the sphere. 
Those points that lie near or along the outer surface of the sphere will have an uneven 
distribution of neighboring points. There will be more neighboring points between our point of 
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interest and the center of the sphere than between that point and the outer surface of the sphere. 
In the case of a point along that outer surface, if we surround that point with a small sphere, less 
than half of that sphere will be filled with neighboring points (the intersection of the small sphere 
and the structure space). So what does this mean? While we can continue to make predictions 
about chemicals that lie along or near the edge of our structure space (or even slightly outside 
that defined space), if we are being cautious (or need to be conservative in our predictions) the 
“domain of applicability” or prediction space for the structure space should be defined as a 
subset of the structure space which is well characterized; i.e., a subset well within the bounds of 
the full structure space where even compounds on the outer edge of the prediction space are 
well-defined in terms of surrounding neighbors in the greater structure space. 
 And finally, in the future it will be interesting to see whether integrated structure spaces 
consisting of chemodescriptors and biodescriptors (descriptors of relevant biological activity) 
allow for increased selectivity in analog selection and estimation of biomedicinal and 
toxicological properties. 
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