Reactions of superelectrophilic BH2+, BCl2+ and AlCl2+ with carbonyl compounds and alkenes ¹

George. A. Olah*, G. K. Surya Prakash, and Golam Rasul

Loker Hydrocarbon Research Institute and Department of Chemistry, University of Southern California, University Park, Los Angeles, CA 90089-1661

E-mail: olah@usc.edu

Dedicated to commemorate the 100th birthday anniversary of late Professor C. D. Nenitzescu

(received 26 Apr 2001; accepted 01 Apr 2002; published on the web 09 Apr 2002)

Abstract

Density functional theory (DFT) method was employed to investigate the reactions of superelectrophilic BH_2^+ , BCl_2^+ and $AlCl_2^+$ with carbonyl compounds (formaldehyde, acetaldehyde) and alkenes (ethene, propene). Addition to BH_2^+ with formaldehyde and acetaldehyde first give exothermically O-coordinated allylic type structures. Subsequent hydride shifts from BH_2 group to the carbonyl carbon were also calculated to be exothermic. However, the processes have considerable kinetic barrier. Similar reactions of BCl_2^+ and $AlCl_2^+$ were also studied. Reactions of BH_2^+ , BCl_2^+ and $AlCl_2^+$ with alkenes (ethene, propene) were also computed and compared with the results obtained with those of formaldehyde and acetaldehyde.

Keywords: Superelectrophiles, carbonyl compounds, alkenes, density function theory

Introduction

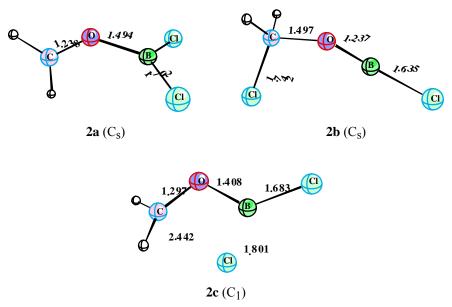
The parent dicoordinate boron cation, BH_2^+ is isoelectronic with the carbon analog CH_2^{2+} dication. The ion BH_2^+ is readily formed in the gas phase.^{2,3} The structures of the BH_2^+ cation²⁻⁴ and CH_2^{2+} dication⁵ have been calculated by *ab initio* methods. The linear $D_{\infty h}$ symmetrical structures were found to be preferred for both BH_2^+ and CH_2^{2+} . Gas phase reactions of BH_2^+ with saturated hydrocarbons by experiment and theory have also been reported.³ In contrast to the reactive methyl cation, the exothermicity of the reactions with BH_2^+ was found to be moderate and the energy profiles of the reactions were found to be well defined.³

Recently we reported⁶ the calculated structures of the complexes of CO₂, COS and CS₂ with superelectrophilic⁷ BH₄⁺ species. BH₄⁺ can be obtained in the gas phase by reacting BH₂⁺ and

ISSN 1424-6376 Page 7 [©]ARKAT USA, Inc

H₂.^{2,3} Complexations of CO₂, COS and CS₂ with BH₄⁺ were calculated to be exothermic in the range of 26-42 kcal/mol.⁶ However, similar complexations of CO₂, COS and CS₂ with neutral BH₃ lead to very weak complexes with long B-O or B-S bonds. It is indicated that the BH₄⁺ complexes are significantly activated compared with their parents and readily undergo ionic hydrogenation.⁶ Similar to BH₄⁺, superelectrophilic BH₂⁺ also should be significantly more reactive than Lewis acidic BH₃. In continuation of our work we now report investigation of the reactions of BH₂⁺ with some carbonyl compounds (formaldehyde, acetaldehyde) and alkenes (ethene, propene) by the density functional theory (DFT) method. Related Brown's hydroboration of alkenes has been widely utilized in organic synthesis.⁸ We also studied reactions of the analogous BCl₂⁺ and AlCl₂⁺. In the mechanism of initiation step of aluminum chloride catalyzed alkene polymerization under aprotic conditions Olah suggested⁹ the involvement of superelectrophilic AlCl₂⁺ (**Scheme 1**). The intermediate AlCl₂⁺ an analog of BCl₂⁺, can be formed by self ionization of aluminum trichloride dimer.

$$(AICI_3)_2 \longrightarrow AICI_2^+ AICI_4^-$$


$$(H_3C)_2C = CH_2 + AICI_2^+ AICI_4^- \longrightarrow (H_3C)_2C - CH_2AICI_2 AICI_4$$

Scheme 1

Calculations

Calculations were carried out with the Gaussian 98 program system. 10 The geometry optimizations were performed using the DFT 11 method at the B3LYP 12 /6-311+G** level. 13 Vibrational frequencies at the B3LYP 12 -6-311+G**/B3LYP 12 -6-311+G** level were used to characterize stationary points as minima (number of imaginary frequency (NIMAG) = 0) or transition state (NIMAG = 1) and to evaluate zero point vibrational energies (ZPE) which were scaled by a factor of 0.96. Final energies were calculated at the B3LYP 12 -6-311+G**/B3LYP 12 -6-311+G** geometrical parameters and final energies will be discussed throughout, unless stated otherwise.

ISSN 1424-6376 Page 8 [©]ARKAT USA, Inc

Figure 1. B3LYP/6-311+G** structures of 1a-1c and 2a-2c.

Results and Discussion

Reactions of BH2+ and BCl2+ with formaldehyde

Reaction of BH_2^+ with formaldehyde first leads to a O-coordinated non-planar allylic type species **1a** (C_s symmetrical) with C-O and B-O bond distances of 1.234 and 1.412 Å, respectively (**Figure 1**). Possible planar isomer as shown in **Scheme 1**, although a minimum on the potential energy surface, is 4.1 kcal/mol less stable than **1a**.

Initial adduct 1a is more stable than the reactants BH_2^+ and formaldehyde by 72.3 kcal/mol (**Table 1**). Subsequent hydride shift from the BH_2 group to the carbonyl carbon leads to C_{3v} symmetrical cation 1b (**Figure 1**). The process was calculated to be exothermic by 27.6 kcal/mol. The ion 1b is characterized with a short B-O distance of 1.213 Å. We have located transition structure, 1c (**Figure 1**) for the hydride transfer process which lies 24.2 kcal/mol higher in energy than 1a. Thus 1a has a significant kinetic barrier for hydride transfer. The nature of transition state 1c was also checked by IRC (intrinsic reaction coordinate) calculations. 10

Reaction of BCl₂⁺ with formaldehyde also first leads to a O-coordinated **2a** with C-O and B-O bond distances are 1.238 and 1.494 Å, respectively (**Figure 1**). Formation of **2a** from BCl₂⁺

ISSN 1424-6376 Page 9 [©]ARKAT USA, Inc

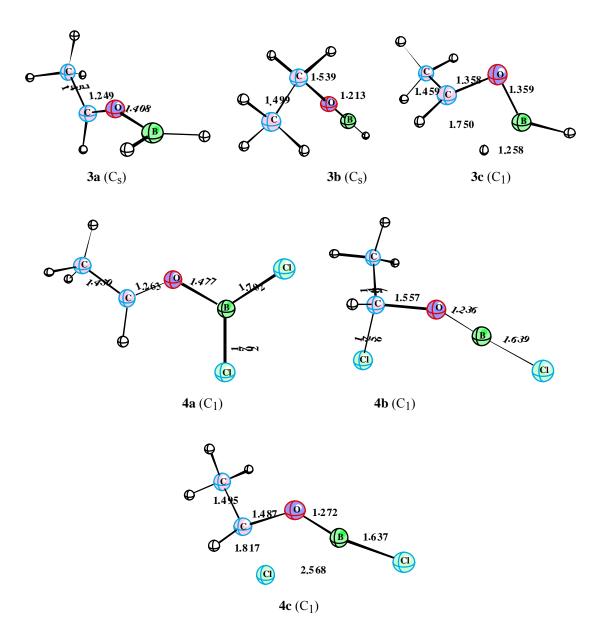
and formaldehyde was computed to be exothermic by 41.3 kcal/mol. Subsequent chloride shift leads to **2b** (**Figure 1**). The process, however, is endothermic by 13.2 kcal/mol. Transition structure, **2c** (**Figure 1**) for the process lies 17.2 kcal/mol higher in energy than **2a**.

Table 1. Total energies (-au), ZPE^a and relative energies (kcal/mol)^b

	. ,,			
no.	B3LYP/6-311+G	**// ZP E	rel. energy	
-	B3LYP/6-311+G	**	(kcal/mol)	
1a	140.30138	30.7	27.6	
1b	140.34795	32.3	0.0	
1c	140.26113	29.6	51.8	
$BH2^+ + H2C=O$	140.17941	26.5	99.9	
2a	1059.64810	22.3	0.0	
2b	1059.62826	23.0	13.2	
2c	1059.62000	21.9	17.2	
$BC12^+ + H2C=O$	1059.57810	19.7	41.3	
- -				
3a	179.66087	47.3	13.6	
3b	179.68550	49.2	0.0	
3c	179.62357	46.7	36.4	
$BH2^+ + CH3CH=O$	179.51980	43.7	98.3	
_				
4a	1099.00966	38.8	0.0	
4 b	1098.96802	39.4	26.7	
4c	1098.96479	39.3	28.7	
$BC12^+ + CH3CH = O$	1098.91849	36.9	55.3	
5a	104.34875	44.3	8.1	
5b	104.36244	44.8	0.0	
5c	104.34013	43.8	13.0	
$BH2^+ + H2C = CH2$	104.25316	41.1	64.9	
6a	1023.69373	35.9	0.0	
6b	1023.69039	36.7	2.9	
6c	1023.68460	35.8	5.6	
$BCl_2^+ + H_2C = CH_2$	1023.65185	34.3	24.7	
- -				
7a	143.69565	60.5	0.0	
7b	143.69058	61.8	4.5	

ISSN 1424-6376 Page 10 [©]ARKAT USA, Inc

Table 1. Continued				
7c	143.68100	60.6	9.3	
$BH2^+ + CH3CH = CH2$	143.58013	58.0	70.0	
8a	1063.04632	52.4	0.0	
$BCl_2^+ + CH_3CH = CH_2$	1062.97882	51.2	41.2	
9a	1277.33402	19.9	0.0	
		18.0	51.4	
AlCl2+ + H2C=O	1277.24917	18.0	31.4	
10a	1316.69188	36.7	0.0	
$AlCl_2^+ + CH_3CH = O$	1316.58956	35.2	62.7	
11a	1241.38165	34.1	0.0	
11b	1241.35461	34.7	17.6	
11c	1241.35715	34.1	15.4	
$AlCl_2^+ + H_2C = CH_2$	1241.32292	32.6	35.4	
120	1200 72667	5 0.0	0.0	
12a	1280.72667	50.8	0.0	
AlCl ₂ ⁺ + CH ₃ CH=CH ₂ 1280.64989		49.5	46.9	
H ₂ C=O	114.54176	16.0		
CH ₃ CH=O	153.88215	33.2		
H ₂ C=CH ₂	78.61551	30.6		
CH3CH=CH2	117.94248	47.5		
BH2 ⁺	25.63765	10.5		
BCl ₂ ⁺	945.03634	3.7		
AlCl2 ⁺	1162.70741	2.0		


^a Zero point vibrational energies (ZPE) at B3LYP/6-311+G**// B3LYP/6-311+G** scaled by a factor of 0.96; ^b rel. energies at the B3LYP/6-311+G**//B3LYP/6-311+G** + ZPE level.

Reactions of BH₂⁺ and BCl₂⁺ with acetaldehyde

For comparison, we have also calculated the reaction of BH_2^+ with the next higher homologue acetaldehyde. Initial adduct was also found to be the allylic type structure **3a** (**Figure 2**). Formation of **3a** from BH_2^+ and acetaldehyde was computed to be exothermic by 84.7 kcal/mol. The reaction is 12.4 kcal/mol more exothermic than the reaction of BH_2^+ with acetaldehyde (**Table 1**). Hydride shift in **3a** to give **3b** was found to be exothermic by 8.1 kcal/mol. This is considerably less exothermic compared to that in **1a**. The barrier for hydride transfer in **3a**

ISSN 1424-6376 Page 11 [©]ARKAT USA, Inc

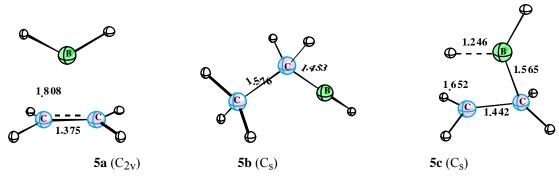
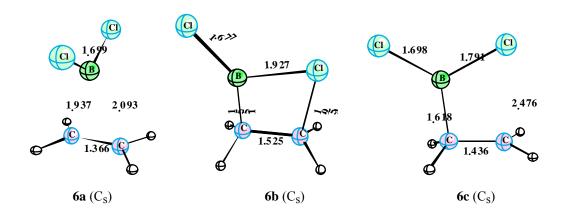
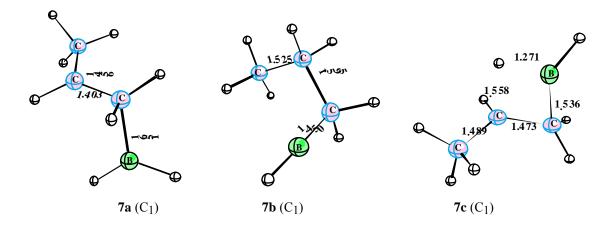

through transition state 3c was calculated to be 22.8 kcal/mol. Structures of 3b and 3c are depicted in Figure 2.

Figure 2. B3LYP/6-311+ G^{**} structures of 3a-c and 4a-4c.

Reaction of BCl_2^+ with acetaldehyde also gives the similar allylic structure **4a** (**Figure 2**). Chloride shift in **4a** to give **4b** was found be endothermic by 26.7 kcal/mol and the barrier through transition state **4c** was calculated to be 28.7 kcal/mol.


ISSN 1424-6376 Page 12 [©]ARKAT USA, Inc


Figure 3. B3LYP/6-311+G** structures of 5a-5c.

Reactions of BH₂⁺ and BCl₂⁺ with ethene

Reaction of BH_2^+ with the parent alkene, ethene resulting in a bridged C_{2v} symmetrical structure $\mathbf{5a}$ (Figure 3). Structure $\mathbf{5a}$ is characterized with a long B-C bond distance of 1.808 Å. The ion $\mathbf{5a}$ can be considered as a complex between BH_2^+ and a ethene molecule attached by a three-center two-electron (3c-2e) bond involving boron atom and two carbon atoms. The reaction of BH_2^+ and ethene was computed to be exothermic by 56.8 kcal/mol (Table 1). The hydride transfer reaction in the cation $\mathbf{5a}$ to give $\mathbf{5b}$ was calculated to be exothermic by only 8.1 kcal/mol. Thus thermodynamically, hydride transfer in the cation $\mathbf{5a}$ should be less favorable compared to that in the cation $\mathbf{1a}$. Transition state $\mathbf{5c}$ for hydride transfer in $\mathbf{5a}$ was located and lies only 4.9 kcal/mol above $\mathbf{5a}$. The 4.9 kcal/mol value is significantly less than compared to 24.2 kcal/mol calculated for $\mathbf{1a}$. Hydride transfer in $\mathbf{5a}$, therefore, should be facile compared to that in $\mathbf{1a}$. In a related study Houk and co-workers have calculated the transition structures for the reactions of neutral BH_3 and a number of alkenes, allenes and alkynes by *ab initio* methods. $\mathbf{14}$

ISSN 1424-6376 Page 13 [©]ARKAT USA, Inc

Figure 4. B3LYP/6-311+G** structures of 6a-6c and 7a-7c.

Similar reaction of ethene with BCl₂⁺ resulting in a unsymmetrically bridged structure **6a** (**Figure 4**) can be considered as a complex between BCl₂⁺ and an ethene molecule. The reaction of BCl₂⁺ and ethene was computed to be exothermic only by 24.7 kcal/mol (**Table 1**). Attempts to find a chloride transferred minimum structure, similar to **5b**, failed because of rearrangement to form the more stable cyclic chloronium ion structure **6b**. The ion **6b** is only 2.9 kcal/mol less stable than **6a**. Transition state **6c**, connecting **6a** and **6b** was located and lies only 5.6 kcal/mol above **6a**.

Reactions of BH₂⁺ and BCl₂⁺ with propene

Unlike the reaction of BH_2^+ and ethene, reaction of BH_2^+ with propene gives a non-bridged unsymmetrical structure **7a** (**Figure 4**). In **7a** there is no bonding interaction between boron atom and carbocationic carbon. The reaction of BH_2^+ with propene was computed to be exothermic by 70.0 kcal/mol (**Table 1**). The hydride shift in **7a** to give **7b** was found to be endothermic by 4.5 kcal/mol. Thus, based on thermodynamics hydride shift in **7a** is less favorable compared to that in the cation **5a**. Transition state **7c** for hydride transfer in **7a** was also located and lies 9.3 kcal/mol above **7a**. This value is substantially more than that calculated for **5a** (4.9 kcal/mol).

Reaction of propene and BCl₂⁺ results only in a minimum unbridged structure **8a**. Structure **8a** can be considered as an analog of a 1,3-carbodication. Structure of **8a** is depicted in Figure 5.

ISSN 1424-6376 Page 14 [©]ARKAT USA, Inc

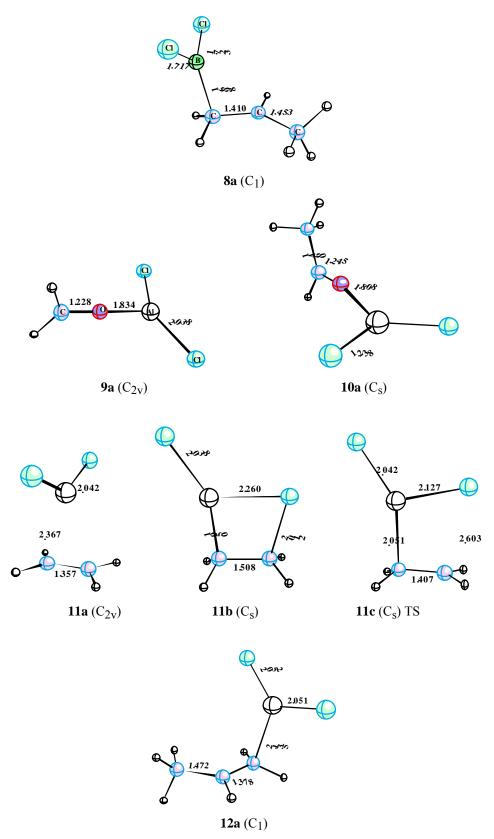


Figure 5. B3LYP/6-311+ G^{**} structures of 8a - 12a.

ISSN 1424-6376 Page 15 [®]ARKAT USA, Inc

Reactions of AlCl₂⁺ with formaldehyde, acetaldehyde, ethene and propene

Reactions of AlCl₂⁺ with formaldehyde and acetaldehyde lead to O-coordinated **9a** and **10a** (**Figure 5**), respectively, and they were found to be more exothermic than the corresponding reactions of BCl₂⁺ by 10.1 and 7.4 kcal/mol. Attempts to find chloride transferred minima failed because of rearrangement to form the more stable structures **9a** and **10a**.

Reaction of ethene with AlCl₂⁺ results in a symmetrically bridged structure **11a** (**Figure 5**). The reaction was computed to be also more exothermic than the corresponding reaction of BCl₂⁺ by 10.7 kcal/mol (**Table 1**). Attempts to find a chloride transferred minimum failed because of rearrangement to form the more stable cyclic chloronium ion structure **11b**. However, **11a** is 17.6 kcal/mol more stable than **11b**. Transition state **11c**, connecting **11a** and **11b** was located and lies 15.4 kcal/mol above **11a**. Reaction of propene and AlCl₂⁺ results only in a minimum unbridged structure **12a**. The structure of **12a** is depicted in Figure 5.

Superelectrophilic BCl₂⁺ was suggested¹⁵ to be involved in the reactions of boron trichloride with benzene (and other arenes) in the presence of AlCl₃ to give phenyldichloroborane.¹⁶ Boron trichloride itself is only a relatively weak electrophile because of extensive n-p back-donation. When boron trichloride is dissolved in benzene no reaction takes place, however, when AlCl₃ is added chloroboranation takes place. Complexation with the nonbonded chlorine electron pairs activates boron trichloride resulting in the formation of highly reactive BCl₂⁺ (or its equivalent complexes) (**Scheme 2**).

CI AICI₃ CI B CI AICI₄

CI B CI AICI₄

$$C_6H_6$$
 $C_6H_5BCI_2$

Scheme 2

The present study shows that not only π - but also n-donor systems interact readily with BCl_2^+ (or BH_2^+).

Conclusions

The reactions of BH_2^+ , BCl_2^+ and $AlCl_2^+$ with carbonyl compounds (formaldehyde, acetaldehyde) and alkenes (ethene, propene) were investigated by the DFT method. Reaction of BH_2^+ with formaldehyde and acetaldehyde lead to O-coordinated allylic type structures **1a** and **3a**, respectively. Both reactions were computed to be facile and strongly exothermic. Subsequent

ISSN 1424-6376 Page 16 [©]ARKAT USA, Inc

hydride shifts from BH_2 group to the carbonyl carbon to give **1b** and **3b**, respectively, were also calculated to be exothermic although there is a kinetic barrier to be overcome. Similar reactions of BCl_2^+ and $AlCl_2^+$ with formaldehyde and acetaldehyde were also studied. Addition and subsequent hydride or chloride shift reactions of BH_2^+ , BCl_2^+ and $AlCl_2^+$ with ethene and propene were also calculated and compared with those of formaldehyde and acetaldehyde.

Acknowledgments

Support of our work by the National Science Foundation is gratefully acknowledged.

References

- 1. Chemistry in Superacids 52. Part 51, Olah, G. A.; Prakash, G. K. S.; Mathew, T.; Marinez, E. R. *Angew. Chem.* **2001**, *39*, 2547.
- 2. DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E. J. Am. Chem. Soc. 1997, 119, 427.
- 3. DePuy, C. H.; Gareyev, R.; Hankin, J.; Davico, G. E.; Krempp, M.; Damrauer, R. J. Am. Chem. Soc. 1998, 120, 5086.
- 4. Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Phys. Chem. A. 2000, 104, 2284.
- 5. Pople, J. A.; Tidor, B.; Schleyer, P. v. R. Chem. Phys. Lett. 1982, 88, 533.
- 6. Rasul, G.; Prakash, G. K. S.; Olah, G. A. J. Am. Chem. Soc. 1999, 121, 7401.
- 7. Olah, G. A. Angew. Chem., Int. Ed. 1993, 32, 767.
- 8. Brown, H. C. *Boranes in Organic Chemistry*; Cornell University Press: Ithaca, New York, 1972.
- 9. Olah, G. A. Die Makromolekulare Chemie **1974**, 175, 1039.
- Gaussian 98 (Revision A.5), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, R. E.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.;Andres, J. L.; Gonzalez, C.; M. Head-Gordon, M.; Pople, J. A., Gaussian, Inc., Pittsburgh PA, 1998.
- 11. Ziegler, T. Chem. Rev. 1991, 91, 651.

ISSN 1424-6376 Page 17 [©]ARKAT USA, Inc

- 12. (a) Lee, C.; Yang, W.; Parr, R. G. Becke's Three Parameter Hybrid Method Using the LYP. *Phys. Rev. B* **1988**, *37*, 785. (b) Becke, A. D. *J.* Correlation Functional *Chem. Phys.* **1993**, 98, 5648.
- 13. Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. *Ab Initio Molecular Orbital Theory*; Wiley-Interscience: New York, 1986.
- 14. Wang, X.; Li, Y.; Wu, Y.-D.; Paddon-Row, M. N.; Rondan, N. G.; Houk, K. N. J. Org. Chem. 1990, 55, 2601.
- 15. Olah, G. A. In *The Borane, Carborane, Carbocation Continuum*; Casanova, J. Ed.; Wiley-Interscience: New York, 1998.
- 16. Muetterties, E. J. Am. Chem. Soc. 1959, 81, 2597.

ISSN 1424-6376 Page 18 [©]ARKAT USA, Inc