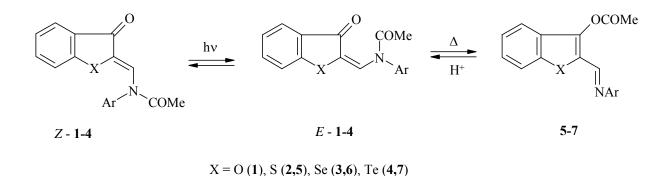
Photochromic properties of 2-(*N*-acetyl-*N*arylaminomethylene)benzo[*b*]furan-, thiophene-, selenophene- and tellurophene-3(2*H*)-ones

Vladimir A. Bren,^{a,b} Alexander D. Dubonosov,^{*b} Lidiya L. Popova,^a Vladimir P. Rybalkin,^a Igor D. Sadekov,^a Evgenii N. Shepelenko,^a and Alexey V. Tsukanov^a

^a Institute of Physical and Organic Chemistry, Rostov State University, 194/2 Stachka av., Rostov on Don, 344090, Russia, and ^b Southern Scientific Center of Russian Academy of Sciences, 41 Chekhova st., Rostov on Don, 344006, Russia E-mail: <u>dubon@ipoc.rsu.ru</u>

Dedicated to Professor V. Minkin on the occasion of his 70th birthday (received 01 Dec 04; accepted 10 Feb 05; published on the web 05 Mar 05)

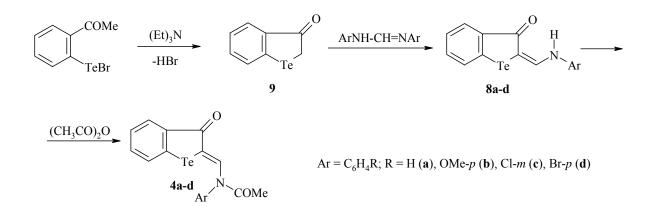

Abstract

Novel photochromic systems – (2*Z*)-2-(*N*-acetyl-*N*-arylaminomethylene)benzo[*b*]tellurophene-3(2*H*)-ones have been synthesized. Their properties were studied in comparison with analogous benzo[*b*]furan, benzo[*b*]thiophene, and benzo[*b*]selenophene derivatives. The long-wave absorption band of these compounds shifts bathochromically in the following order of heteroatoms: O < S < Se < Te from 380 nm to 455 nm and the quantum yields of photoinitiated N→O acyl rearrangement (including Z/E-isomerization around the C=C bond and fast thermal migration of the acetyl group) increase from 0.60 (S) to 0.71 (Te). The acid catalyzed reverse $O \rightarrow N$ acyl rearrangement constant rates are $1.1 \cdot 10^{-4} \text{ s}^{-1}$ (Te) $< 4.2 \cdot 10^{-4} \text{ s}^{-1}$ (Se) $< 1.0 \cdot 10^{-3} \text{ s}^{-1}$ (S).

Keywords: Benzo[*b*]tellurophene-3(2*H*)-ones, photochromism, *Z/E*-isomerization, acyl rearrangement

Introduction

Photochromism of five-membered benzo[*b*]annelated heterocyclic (2*Z*)-2-(*N*-acetyl-*N*-arylaminomethylene)derivatives is based on the original mechanism (Scheme 1): photoinitiated *Z/E*-isomerization around the exocyclic C=C bond of *N*-acylketoenamines **1-3** followed by fast thermal N \rightarrow O migration of the acetyl group.¹⁻³


Scheme 1

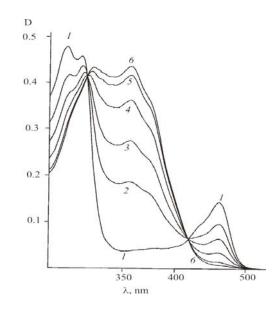
This reversible rearrangement was first used for abiotic solar energy storage.¹ Modification of the *N*-acylketoenamines 2 structure imparts to them the properties of molecular switches, 2,4 photochromic pH-sensors⁵ and chemosensors for metal cations.^{2,6} However the photochemical properties of *N*-arylketoenamines **1-3** significantly depend on the heteroatom X: the irradiation of benzo[b]furan derivatives 1 results only in Z/E-isomerization without the possible change to subsequent migration of the acetyl group. Benzo[b]thiophene and benzo[b]selenophene ketoenamines 2.3 under these conditions efficiently form stable O-acetyl isomers 5.6. For the further investigation of the influence of the heteroatom X on the photochromic properties of the ketoenamines 1-3 have synthesized series of (2Z)-2-(N-acetyl-Nwe а arylaminomethylene)benzo[b]tellurophene-3(2H)-ones 4a-d.

Results and Discussion

Synthesis

Compounds **4a-d** were obtained by acylation of ketoenamines **8a-d** with acetic anhydride according to the previously described procedure.^{4,6} *N*-Acylketoenamines **1-3** were synthesized earlier.^{1,3-5} Ketoenamines **8** have been synthesized by condensation of benzo[*b*]tellurophene-3(2H)-one **9** with corresponding diarylformamidines.

Scheme 2


Photochemistry

The structures of the novel compounds **4a-d** correspond to the *N*-acetyl isomers as well as **1**-**3**.^{1,3-5} IR spectra of **4** display characteristic amide (1680-1690 cm⁻¹) and exocyclic carbonyl group (1630-1640 cm⁻¹) vibration frequencies. Their *Z*-configuration is evidenced by the lowfield resonance ¹H NMR signals of the methine protons at 9.3-9.4 ppm.^{1,3} The signals of the *E*form methine protons were previously attributed to ~ 5.90 ppm.² The UV-Vis absorption spectra of *N*-acylketoenamines **4a-d** exhibit bathochromic shifts of the long-wave band due to increasing electron-donating properties of the heteroatom X (Table 1). Irradiation of toluene or acetonitrile solutions of *N*-acylated ketoenamines **4a-d** ($\lambda_{irr} = 436$ nm, $C = 2.5 \times 10^{-5}$ M, l = 1 cm, V = 2 ml, τ_{irr} = 1 min, rate of conversion of **4a-d** \rightarrow **7a-d** \geq 97%) in the region of the low-wavelength absorption maxima results in *Z/E*-isomerization around the exocyclic C=C bond and fast thermal N \rightarrow O migration of the acetyl group with formation of *O*-acetyl isomers **7a-d** (Scheme 1, Figure 1). This photorearrangement doesn't show any wavelength dependence.

	Х	Absorption,		φ*
		$\lambda_{max} [nm]$	$\epsilon^{-10^{-4}}$, dm ³ mol ⁻¹ cm ⁻¹	
1	0	380	1.52	-
2	S	425	1.08	0.60
3	Se	435	1.02	0.66
4	Te	455	0.59	0.70

Table 1. The characteristics of compounds **1-4** in toluene (Ar = Ph)

* N→O acyl photorearrangement quantum yield.

Figure 1. Absorption spectra of *Z*-4a in toluene: before irradiation (1); after 5s (2); 10s (3); 20s (4); 40s (5); 60s (6), of irradiation ($\lambda_{irr} = 436 \text{ nm}, \text{C} = 2.5 \text{ 10}^{-5} \text{ M}$).

The quantum yields of the photoinitiated reactions $2\rightarrow 5$, $3\rightarrow 6$, and $4\rightarrow 7$ increase in parallel with the dimension of the heteroatom X : S < Se < Te probably due to the decreasing distance between the acyl carbon and the ring carbonyl oxygen in *E* - **2**-**4**. Compounds **7a**-**d** absorb in the 330-360 nm region and the ester carbonyl group frequencies are found in their IR spectra at 1775-1780 cm⁻¹ (in CCl₄). The attempts to isolate compounds 7 were uneffective because, contrary to the benzo[*b*]thiophene derivative **5** (Ar = C₆H₄NO₂-3, see X-ray data in ref. 3), the reaction *Z* - **4** \rightarrow 7 conducted in a quartz photo-reactor with a non-filtered source of light lead to a hardly separable mixture of *Z* - **4**, 7, and unknown by-products.

Benzo[*b*]thiophene and benzo[*b*]selenophene derivatives **2**,**3** exhibit weak fluorescence at room temperature ($\lambda_{max} = 470-480 \text{ nm}$) and its intensity decreases to zero after the rearrangement to the *O*-acetyl isomers **5**,**6**. Benzo[*b*]tellurophene derivatives **4** do not possess distinguishable fluorescence probably due to the "heavy atom" effect.⁷ Photo-produced *O*-acetyl isomers **7** are rather stable especially in non-polar solvents but under acid catalysis they rearrange back to **4**. The thermal O \rightarrow N acyl migration constant rates (C₅ = C₆ = C₇ = C_{TCA} = 2.5 · 10⁻⁵ M; Ar = Ph) increase in the sequence: Te (1.1 10-4 s⁻¹) < Se (4.2 10⁻⁴ s⁻¹) < S (1.0 10⁻³ s⁻¹). The cycle of **4** = **7** photoinitiated and catalysed transformations can be produced repeatedly with the use of cation exchange resin as a catalyst.

Conclusions

2-(*N*-Acetyl-*N*-arylaminomethylene)benzo[*b*]thiophene-, selenophene-, and tellurophene-3(2H)-ones represent the logical series of inverse photochromic systems with photoinitiated *Z/E*-isomerization followed by thermal N \rightarrow O migration of acetyl group.

Experimental Section

General Procedures. ¹H NMR spectra were recorded on a Varian Unity 300 (300 mHz) spectrometer with internal standard HMDS. IR spectra in Nujol and CCl₄ were measured using a Specord 75IR spectrometer. UV-vis absorption spectra in toluene have been obtained with Specord M-40 spectrophotometer. Irradiation of solutions was carried out by filtered light from a high-pressure mercury lamp DRSh (250 W) fitted with a set of glass filters ($\lambda_{irr} = 436$ nm). Potassium ferrioxalate was used as an actinometer for the quantum yield calculations.⁸ Fluorescence spectra in CH₃CN were measured on a Hitachi 650-60 spectrofluorimeter.

Benzo[*b*]**tellurophene-3**(2*H*)**-one (9).** was obtained according to a modified procedure.⁹ A solution of 2-acetylphenyltellurenylbromide (1.64 g, 5 mmol) and triethylamine (50 mmol) in 20 ml of chloroform was heated under reflux for 5 h under an argon atmosphere. The reaction mixture was washed with water (3 x 20 ml) and the organic layer was dried with Na₂SO₄ and concentrated under reduced pressure. The precipitate was filtered and crystallized from cyclohexane. This yielded **9** as a white powder 1.05 g (85%), mp 107-108 °C. Lit. mp 107 °C. IR (v, cm⁻¹): 1630, 1540. ¹H NMR (CDCl₃, δ , ppm): 4.26 (s, 2H, CH₂), 7.26-7.76 (m, 4H, Ar). Anal. Calc. for C₈H₆OTe (245.74): C, 39.10; H, 2.46. Found: C, 39.16; H, 2.43 %.

2-(*N***-Phenylaminomethylene)benzo[***b***]tellurophene-3(2***H***)-one (8a). A solution of benzo[***b***] tellurophene-3(2***H***)-one (4 mmol) and diphenylformamidine¹⁰ (4 mmol) in 5 ml of 2-propanol was refluxed for 4 h and was then cooled to 10-15 °C. The precipitate was filtered and crystallized from toluene. This yielded 8a as a red powder 55%, mp 162-163 °C. UV-Vis [\lambda, nm (\epsilon · 10⁻⁴, dm³mol⁻¹cm⁻¹)]: 300 (0.88), 362 (1.12), 483 (0.93). IR (v, cm⁻¹): 1640, 1580. ¹H NMR (CDCl₃, \delta, ppm): 6.84-7.81 (m, 9H, Ar), 8.59-8.64 (d, 1H, =CH,** *J* **= 14.0 Hz), 9.60-9.67 (d, 1H, NH,** *J* **= 14.0 Hz). Anal. Calc. for C₁₅H₁₁NOTe (348.87): C, 51.64; H, 3.18. Found: C, 51.68; H, 3.23%.**

(2Z)-2-(*N*-Acetyl-*N*-phenylaminomethylene)benzo[*b*]tellurophene-3(2*H*)-one (4a). Ketoenamine **8a** (2 mmol) was dissolved in 5 ml of boiling acetic anhydride. The precipitate was filtered and crystallized from toluene. This yielded **4a** as a red-orange powder 49%, mp 210-211 °C. UV-Vis [λ , nm (ϵ 10⁻⁴, dm³mol⁻¹cm⁻¹)]: 304 (1.93), 316 (1.82), 455 (0.59). IR (v, cm⁻¹): 1690, 1630, 1580. ¹H NMR (CDCl₃, δ , ppm): 1.99-2.08 (s, 3H, CH₃), 7.10-7.85 (m, 9H, Ar), 9.38-9.41 (s, 1H, =CH). Anal. Calc. for C₁₇H₁₃NO₂Te (390.90): C, 52.24; H, 3.35. Found: C, 52.30; H, 3.36%.

(2Z)-2-[N-Acetyl-N-(4-methoxyphenyl)aminomethylene]benzo[b]tellurophene-3(2H)-one

benzo[*b*]tellurophene-3(2*H*)-one solution (4 (4b). А of mmol) and di(4methoxyphenyl)formamidine ¹⁰ (4 mmol) in 6 ml of 2-propanol was refluxed for 4 h. The precipitate was washed hexane. Obtained 2-[N-(4filtered and bv methoxyphenyl)aminomethylene]benzo[b]tellurophene-3(2H)-one **8b** was dissolved in 5 ml of acetic anhydride and boiled for 10 min. Hot reaction mixture was filtered and after cooling the precipitate 4b was isolated and crystallized from toluene. This yielded 4b as a red powder 46%,

mp 252-254 °C. UV-Vis $[\lambda, nm (\epsilon \cdot 10^{-4}, dm^3mol^{-1}cm^{-1})]$: 305 (1.56), 316 (1.50), 455 (0.52). IR (v, cm⁻¹): 1680, 1630, 1570. ¹H NMR (CDCl₃, δ , ppm): 1.96-2.10 (s, 3H, CH₃), 3.96-3.98 (s, 3H, OCH₃), 7.20-7.86 (m, 8H, Ar), 9.38-9.43 (s, 1H, =CH). Anal. Calc. for C₁₈H₁₅NO₃Te (420.93): C, 51.36; H, 3.59. Found: C, 51.39; H, 3.57%.

(2Z)-2-[*N*-Acetyl-*N*-(3-chlorophenyl)aminomethylene]benzo[*b*]tellurophene-3(2*H*)-one (4c). was obtained in a similar way to 4b. This yielded 4c as a red powder 40%, mp 252-254 °C. UV-Vis [λ , nm (ϵ ⁻ 10⁻⁴, dm³mol⁻¹cm⁻¹)]: 303 (1.82), 454 (0.53). IR (ν , cm⁻¹): 1680, 1640, 1580. ¹H NMR (CDCl₃, δ , ppm): 2.04-2.18 (s, 3H, CH₃), 7.18-7.85 (m, 8H, Ar), 9.29-9.36 (s, 1H, =CH). Anal. Calc. for C₁₇H₁₂NO₂CITe (425.35): C, 48.00; H, 2.84. Found: C, 48.01; H, 2.89%.

(2Z)-2-[*N*-Acetyl-*N*-(4-bromophenyl)aminomethylene]benzo[*b*]tellurophene-3(2*H*)-one (4d). was obtained in a similar way to 4b. This yielded 4d as a red powder 42%, mp 273-274 °C. UV-Vis [λ , nm (ϵ 10⁻⁴, dm³mol⁻¹cm⁻¹)]: 303 (1.95), 455 (0.59). IR (ν , cm⁻¹): 1680, 1630, 1570. ¹H NMR (CDCl₃, δ , ppm): 2.00-2.18 (br. s, 3H, CH₃), 7.17-7.83 (m, 8H, Ar), 9.25-9.34 (s, 1H, =CH). Anal. Calc. for C₁₇H₁₂NO₂BrTe (469.80): C, 43.46; H, 2.57. Found: C, 43.49; H, 2.50%.

Acknowledgements

This work was supported by Russian Foundation for Basic Research (grant 02-03-32527) and RF Ministry of Education and Science (grant NSh.945.2003.3).

References

- 1. Minkin, V.I.; Bren, V.A.; Lyubarskaya, A.E. In *Organic Photochromes*; Eltsov, A. V., Ed.; Consultants Bureau: New York and London, 1990; Ch. 5.
- 2. Dubonosov, A.D.; Minkin, V.I.; Bren, V.A.; Popova, L.L.; Rybalkin, V.P.; Shepelenko, E.N.; Tkalina, N.N.; Tsukanov, A.V. *ARKIVOC* **2003**, (*xiii*), 12.
- Aldoshin, S.M.; Dyachenko, O.A.; Atovmyan, L.O.; Minkin, V.I.; Bren, V.A.; Paluy, G.D. Z. Kristallogr. 1982, 159, 143.
- Bren, V.A.; Dubonosov, A.D.; Karamov, O.G.; Makarova, N.I.; Minkin, V.I.; Popova, L.L.; Rybalkin, V.P.; Tkalina, N.N.; Tsukanov, A.V.; Shepelenko, E.N. *Russ. J. Org. Chem.* 2002, 38, 1698.
- Bren, V.A.; Dubonosov, A.D.; Minkin, V.I.; Popova, L.L.; Revinskii, Yu.V.; Rybalkin, V.P.; Tolpygin, I.E.; Tsukanov, A.V.; Shepelenko, E.N. *Russ. J. Org. Chem.* 2002, *38*, 1813.
- Rybalkin, V.P.; Popova, L.L.; Dubonosov, A.D.; Shepelenko, E.N.; Revinskii, Yu.V.; Bren, V.A.; Minkin, V.I. *Russ. J. Org. Chem.* 2001, 37, 1318.
- 7. Barltrop, J.A.; Coyle, J.D. *Excited States in Organic Chemistry*; Wiley: London, New York, 1975.
- 8. Hatchard, C.G.; Parker, C.A. Proc. Roy. Soc. 1956, A235, 518.

Issue in Honor of Prof. Vladimir I. Minkin

- 9. Talbot, J.H.; Piette, J.L.; Renson, H. Bull. Soc. Chim. Fr. 1976, 294.
- 10. Lochon, P. Bull. Soc. Chim. Fr. 1965, 393.