Design and syntheses of 4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]- and 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]- derivatives of alkyl 1,4-dihydro-2,6-dimethyl-3-nitro-5-pyridinecarboxylates with calcium channel modulating activities

Mohsen Amini, Carol-Anne McEwen, and Edward E. Knaus*

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2N8
E-mail: eknaus@pharmacy.ualberta.ca

Dedicated to Rudolph A. Abramovitch on the occasion of his 70 ${ }^{\text {th }}$ birthday (received 06 Apr 01; accepted 18 Sep 01; published on the web 26 Sep 01)

Abstract

A group of 4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]- derivatives of alkyl 1,4-dihydro-2,6-dimethyl-3-nitro-5-pyridinecarboxylates 8a-e were synthesized by the regioselective reduction of the corresponding 4-(3-pyridyl)- analogs in the presence of methyl chloroformate using $\mathrm{Li}(t-$ $\mathrm{BuO}) 3 \mathrm{AlH}$. Alternatively, a related group of 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]- compounds 14-18 were prepared using a modified Hantzsch reaction involving the condensation of 1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl-3-carboxaldehydes 11a-c with an alkyl 3-aminocrotonate 12 and nitroacetone 13. In contrast to the 4-(3-pyridyl)compound $\mathbf{2 b}$, which exhibits an undesirable calcium channel agonist smooth muscle

constriction effect, the two classes of compound 8 and 14-18 retain the desired calcium channel agonist cardiac positive inotropic effect elicited by $\mathbf{2 b}$ while simultaneously inducing a calcium channel antagonist smooth muscle relaxant effect. These studies showed that the 4-[3-(1-methylcarbonyl-1,6-dihydropyridyl)]- and 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]- moieties are suitable bioisosteres to a 4-(3-pyridyl)- substituent with respect to calcium channel modulation. Compounds 8, and 14-18, could serve as valuable probes to study the structure-function relationships of calcium channel modulation, and provide a new drug design concept applicable to the development of drugs for the treatment of congestive heart failure.

Keywords: Dihydropyridines, regiochemistry, calcium channel modulation, positive inotropic agents, drug design concepts

Introduction

The design of cardioselective Hantzsch 1,4-dihydropyridine (DHP) L-type voltage sensitive calcium channel (CC) agonist positive inotropes has presented a significant challenge to medicinal chemistrs. ${ }^{1-3}$ Accordingly, the prototype 1,4-DHP CC agonist (S)-(+)-Bay K 86441 simultaneously promotes calcium entry into vascular smooth muscle, inducing vasconstriction, that prevents its clinical use for the treatment of congestive heart failure (CHF). ${ }^{4.5}$ Recently, we discovered a novel third generation class of isomeric isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-(pyridyl)-5-pyridinecarboxylates 2a-c with different CC modulation activities. ${ }^{6}$ The 2-pyridyl isomer (\pm)-2a acted as a dual cardioselective calcium channel agonist (positive inotrope) / smooth muscle selective calcium channel antagonist (vascular relaxant). On the other hand, the 3-pyridyl (\pm)-2b and 4-pyridyl (\pm)-2c isomers acted as CC agonists on both cardiac and smooth muscle. The 2-pyridyl enantiomer (+)-2a exhibited agonist activity on both cardiac and smooth muscle, but the (-)-2-pyridyl enantiomer (-)-2a exhibited clinically desirable cardiac agonist and smooth muscle antagonist effects. Bay K 86441 exists as the synperiplanr rotamer (CF_{3} cis to the DHP H-4), ${ }^{7}$ whereas the agonist Bay K 86433 has the unexpected antiperiplanar rotamer
orientation (x-ray structure) which places the m-nitro substituent on the phenyl ring directly above the boat-shaped $1,4-$ DHP ring. ${ }^{2}$ Subsequent nuclear Overhauser enhancement (NOE) studies for compounds 4-5 indicated that there is a significant rotamer fraction in solution where the pyridyl nitrogen is oriented above the $1,4-\mathrm{DHP}$ ring, irrespective of whether a substituent $(\mathrm{Me}, \mathrm{Ph})$ is located at the 6- $\left(\mathrm{R}_{1}\right)$ or 3-position $\left(\mathrm{R}_{2}\right)$ of the pyridyl ring. This preferred rotamer orientation was attributed to a potential H -bonding interaction between the pyridyl nitrogen free electron pair and the suitably positioned 1,4-DHP NH moiety that may stabilize this rotamer orientation. ${ }^{8}$ The nature (electronic properties, steric size) and conformation of a heterocyclic ring substituent attached to the C-4 position of the parent $1,4-\mathrm{DHP}$ ring system is expected to be a determinant of electronic charge distribution at the C-4 heterocyclic ring carbons and the global conformation of the molecule due to non-bonded interactions between the parent 1,4-DHP C-3, C-4 and C-5 substituents. These factors may provide an approach to optimize CC binding, CC modulation and/or tissue specificity. It was therefore of interest, as part of our on-going program to acquire structure-activity relationships for CC modulators, to determine the effect which replacement of the 3-pyridyl ring of $\mathbf{2 b}$ by a 3-(1-methoxycarbonyl-1,6-dihydropyridyl)-, or 3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl), ring substituent has upon CC modulation. Accordingly, we now report the synthesis and CC modulation activities for compounds having a quasi-planar C-4 1,6-DHP 8, and boat-shaped C-4 1,4-DHP 14-18, ring moiety.

1, (S)-Bay K 8644

2b, 3-pyridyl
2c, 4-pyridyl

3, Bay K 8643

4, $R^{1}=\mathrm{Me}, \mathrm{Ph} ; \mathrm{R}^{2}=\mathrm{H}$
5, $R^{1}=H ; R^{2}=M e, P h$

Results and Discussion

Chemistry

The 3-(1-methoxycarbonyl-1,6-dihydropyridyl) compounds 8a-e were prepared by reaction of the corresponding pyridines 6a-e with $\mathrm{Li}\left(t-\mathrm{BuO}_{3}\right) \mathrm{AlH}$ and MeOCOCl in THF at $-78{ }^{\circ} \mathrm{C}$ in $14-$ 22% chemical yield as indicated in Scheme 1. Steric effects due to the $1,4-$ DHP C-3 and C-5 ring substituents would be expected to be greatest at the $\mathrm{C}-2$ position of the intermediate pyridinium salt 7. Therefore, this reduction proceeds via regiospecific addition of hydride to the sterically less hindered C-6 position of the pyridinium salt 7. The ${ }^{1}$ H NMR spectra for $\mathbf{8 a} \mathbf{e}$ showed dual resonances indicative of the presence of two rotamers that differ in configuration due to restricted rotation about the nitrogen-to-carbonyl bond of the $\mathrm{N}-\mathrm{CO}_{2} \mathrm{Me}$ moiety. ${ }^{9}$ This explanation is in agreement with the observation that acquisition of the ${ }^{1} \mathrm{H}$ NMR spectra for 8a-e at $78{ }^{\circ} \mathrm{C}$ induced coalescence of the dual resonances (rotamers) to give a single set of resonances.

Scheme 1 6-8: $\mathbf{a}, \mathrm{R}=\mathrm{Me} ; \mathbf{b}, \mathrm{R}=\mathrm{Et} ; c, \mathrm{R}=i-\mathrm{Pr}, d, \mathrm{R}=i-\mathrm{Bu} ; e, \mathrm{R}=t-\mathrm{Bu}$.

One of the most widely used methods to prepare 1,4 -DHPs involves the addition of a nucleophile to activated N-alkyl- or N-acylpyridinium salts. ${ }^{10-12}$ The 1,4- versus 1,2regioselectivity of this reaction is dependent upon the activating N-substituent, the nucleophile, and the nature and position of pyridinium substituents. ${ }^{10}$ In the case of N-acylpyridinium salts, optimal 1,4-selectivity, using organometallic reagents, was obtained for organocopper reagents. ${ }^{11}$ The copper catalyzed reaction of a Grignard reagent with an activated pyridine was first reported by Loev et al. ${ }^{13}$ A related reaction for the synthesis of 1,4-DHPs employing an organocuprate reagent was reported later by Piers et al. ${ }^{14}$ Subsequently, Comins et al. ${ }^{15}$ showed that reaction of an N-alkoxycarbonylpyridinium salt with a Grignard reagent in the presence of a catalytic amount of CuI resulted in nearly exclusive formation of the $1,4-\mathrm{DHP}$ product. In this study, attempts to synthesize the novel class of unsymmetrical 1,4-DHP derivatives 14-18a-c by reaction of the pyridine derivatives 6 with an organocuprate reagent ($n-\mathrm{BuMgBr}+\mathrm{CuI}$), Grignard reagent ($n-\mathrm{BuMgBr}$) or cadmium reagent $\left(n-\mathrm{BuMgBr}+\mathrm{CdCl}_{2}\right)$ in the presence of MeOCOCl were not successful. This failure is attributed to an interaction between the 1,4-DHP nitro substituent of compounds 6 and the organometallic reagent since an earlier study showed that similar reactions employing dialkyl 1,4-dihydro-2,6-dimethyl-4-(3-pyridyl)-3,5pyridinedicarboxylates proceeded as expected to afford the corresponding 4-[3-(1-methoxycarbonyl-1,4-dihydropyridyl)] products in good yield. ${ }^{16}$

An alternate synthetic strategy was therefore employed to by-pass the detrimental effect of the nitro group in compounds 8 starting from the 1-methoxycarbonyl-1,4-dihydropyridyl-3carboxaldehyde 11. In this regard, reaction ${ }^{15},{ }^{17}$ of the ketal 9 with MeOCOCl and a Grignard reagent in the presence of $\mathrm{Me}_{2} \mathrm{~S}$ and CuI afforded the 1,4-DHP ketal derivative 10, which on deprotection using $5 \% \mathrm{HCl}$, yielded the target 1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl-3-carboxaldehydes 11a-c as illustrated in Scheme 2. The subsequent condensation of an aldehyde 11 with the alkyl 3-aminocrotonate 12 and nitroacetone 13, using a modified Hantzsch reaction, ${ }^{6}$ afforded the respective alkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]-5-pyridinecarboxylates 14-18a-c. The ${ }^{1}$ H NMR spectra for compounds $\mathbf{1 4 - 1 8}$ exhibited multiple resonances for a number of protons due to the presence of diasteromeric mixtures (a chiral center is present at the C-4 position of both 1,4DHP rings) and/or rotamers arising from restricted rotation involving the $\mathrm{N}-\mathrm{CO}_{2} \mathrm{Me}$ moiety. ${ }^{9}$

Scheme 2. 10-11: $\mathbf{a}, \mathrm{R}^{1}=\mathrm{Me} ; \mathbf{b}, \mathrm{R}^{1}=n-\mathrm{Bu} ; \mathbf{c}, \mathrm{R} 1=\mathrm{Ph}$.

11

14-18

Scheme 3. 14a, $\mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Me} ; \mathbf{1 4 b}, \mathrm{R}^{1}=n-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Me} ; \mathbf{1 4 c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Me} ; \mathbf{1 5 a}, \mathrm{R}^{1}=$ $\mathrm{Me}, \mathrm{R}^{2}=\mathrm{Et} ; \mathbf{1 5 b}, \mathrm{R}^{1}=n-\mathrm{Bu}, \mathrm{R}^{2}=\mathrm{Et} ; \mathbf{1 5 c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=\mathrm{Et} ; \mathbf{1 6 a}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=i-\mathrm{Pr} ; \mathbf{1 6 b}, \mathrm{R}^{1}=$ $n-\mathrm{Bu}, \mathrm{R}^{2}=i-\mathrm{Pr} ; \mathbf{1 6 c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=i-\mathrm{Pr} ; \mathbf{1 7 a}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=i-\mathrm{Bu} ; \mathbf{1 7 b}, \mathrm{R}^{1}=n-\mathrm{Bu}, \mathrm{R}^{2}=i-\mathrm{Bu} ;$ 17c, $\mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=i-\mathrm{Bu} ; 18 \mathbf{a}, \mathrm{R}^{1}=\mathrm{Me}, \mathrm{R}^{2}=t-\mathrm{Bu} ; \mathbf{1 8 b}, \mathrm{R}^{1}=n-\mathrm{Bu}, \mathrm{R}^{2}=t-\mathrm{Bu} ; \mathbf{1 8 c}, \mathrm{R}^{1}=\mathrm{Ph}, \mathrm{R}^{2}=$ t-Bu.

In vitro calcium channel modulation structure-activity relationships

Changes in the substitution pattern at the C-3, C-4, and C-5 positions of modified Hantzsch 3-nitro-1,4-dihydropyridine calcium channel modulators are determinants of the C-4 heteroaryl rotamer orientation, global conformation, potency and tissue selectivity. ${ }^{6,8}$ The objective of this study was to determine whether elaboration of the planar 4-(3-pyridyl) substituent of $\mathbf{2 b}$ to a quasi-planar 4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]- 8, or a boat-shaped 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]- 14-18, ring system would abolish the undesirable calcium channel agonist effect exhibited by $\mathbf{2 b}$ on smooth muscle while still retaining its desirable cardiac agonist positive inotropic effect. It was anticipated that the N CO2Me substituent in the respective 1,6-, or 1,4-dihydropyridyl, ring systems of 8 and $\mathbf{1 4 - 1 8}$ would mimic a meta-substituent on a phenyl ring or the nitrogen-free electron pair on a 3-pyridyl ring substituent like $\mathbf{2 b}$. These topological differences, present in 8 and 14-18, could influence interactions with the $1,4-\mathrm{DHP}$ binding site(s), or state (resting, open, inactivated) of the calcium channel receptor.

Elaboration of the 4-(3-pyridyl)- ring system of $\mathbf{2 b}$ to either a 4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]- 8, or a 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]- 14-18, ring system abolished the adverse calcium channel agonist (vasoconstrictor) effect exhibited by $\mathbf{2 b}$ on guinea pig ileum longitudinal smooth muscle (GPILSM) while simultaneously inducing a modest desirable calcium channel antagonist smooth muscle relaxant effect $\left[\mathrm{IC}_{50}=10^{-5}\right.$ to $10^{-7} \mathrm{M}$ range relative to the reference calcium channel antagonist drug nifedipine ($\mathrm{IC}_{50}=1.40 \times 10^{-7} \mathrm{M}$) as indicated in Table 1]. Although compounds 8 and $\mathbf{1 4 - 1 8}$ were less potent calcium channel agonist positive inotropes on heart than the reference drug Bay K 8644, both classes of compounds retained positive cardiac inotropic acitivity (see Table 1). The observation that compounds 14-18 exhibit positive inotropic effects over quite a large range ($25-200 \%$ increase in cardiac contractile force at a $4.46 \times 10^{-5} \mathrm{M}$ test compound concentration) indicates that the magnitude of the positive cardiac inotropic is dependent upon co-operative and/or interdependent contributions from the parent 1,4-DHP ring C-3, C-4 and C-5 substituents.

The results of this study show that a 4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-, or a 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]-, ring system is a suitable bioisostere for either the 4-(3-pyridyl)- substituent of $\mathbf{2 b}$, or the 4-(2-trifluoromethylphenyl)- substituent of Bay K 8644, that are devoid of the smooth muscle constrictor effect exhibited by the latter compounds. This group of compounds $\mathbf{8}$, and $\mathbf{1 4 - 1 8}$, which could serve as valuable probes to study the structure-function relationships of calcium channels, constitute novel types of dihydropyridine cardioselective positive inotropes that provides a new drug design concept relevant to the treatment of congestive heart failure.

14-18

Table 1. In vitro calcium channel antagonist and agonist activities for alkyl 1,4-dihydro-2,6-dimethyl-3-nitro-5-pyridinecarboxylates containing a 4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]- 8a-e, or 4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]-14-18a-c moiety

Compound	R^{1}	R or R^{2}	Antagonist activity: $\mathrm{IC}_{50}(\mathrm{M})^{a}$	Inotropic effect on GPLA: \% Change at concentration (M) stated
$\mathbf{8 a}$	$3 / 4$	Me	Inactive	Inactive
8c	$3 / 4$	$i-\mathrm{Pr}$	$3.38 \pm 0.19 \times 10^{-6}$	$+41.3 \pm 30.0 \% @ 4.46 \times 10^{-5}$
8d	$3 / 4$	$i-\mathrm{Bu}$	$1.51 \pm 0.13 \times 10^{-5}$	$+35.6 \pm 28.1 \% @ 4.46 \times 10^{-5}$
14a	Me	Me	$>2.99 \times 10^{-5}$	$+29.5 \pm 25.4 \% @ 4.46 \times 10-5$
15a	Me	Et	$>2.99 \times 10^{-5}$	$+107.4 \% @ 4.46 \times 10^{-5}(\mathrm{n}=2)$
15b	$n-$	Et	$6.48 \pm 1.43 \times 10^{-6}$	$+86.1 \% @ 4.46 \times 10^{-5}(\mathrm{n}=2)$
	Bu			
16a	Me	$i-\mathrm{Pr}$	$1.00 \pm 0.05 \times 10^{-5}$	$+70.9 \pm 49.3 \% @ 4.46 \times 10^{-5}$
16b	$n-$	$i-\mathrm{Pr}$	$3.95 \pm 1.55 \times 10^{-5}$	$+199.9 \pm 148.0 \% @ 4.46 \times 10^{-5}$
	Bu			
16c	Ph	$i-\mathrm{Pr}$	$5.98 \pm 0.07 \times 10^{-6}$	$+58.4 \pm 42.0 \% @ 4.46 \times 10^{-5}$
17a	Me	$i-\mathrm{Bu}$	$1.73 \pm 0.04 \times 10^{-6}$	$+41.1 \pm 31.3 \% @ 4.46 \times 10^{-5}$
17c	Ph	$i-\mathrm{Bu}$	$6.88 \pm 0.60 \times 10^{-7}$	
18a	Me	$t-\mathrm{Bu}$	$>2.99 \times 10^{-5}$	$+122.9 \pm 89.4 \% @ 4.46 \times 10^{-5}$
18b	$n-$	$t-\mathrm{Bu}$	$1.43 \pm 0.35 \times 10^{-5}$	$+57.3 \pm 42.0 \% @ 4.46 \times 10^{-5}$
	Bu			
18c	Ph	$t-\mathrm{Bu}$	$2.68 \pm 0.19 \times 10^{-5}$	$+25.5 \pm 19.4 \% @ 4.46 \times 10^{-5}$
Nifedipine			$1.40 \pm 0.14 \times 10^{-7}$	
2b				$+50.0 \% @ 2.85 \pm 0.20 \times 10^{-5 c}$
Bay K644				

${ }^{a}$ The molar concentration of the test compound causing a 50% decrease in the slow component, or tonic contractile response ($\mathrm{IC} 50 \pm \mathrm{SEM}, \mathrm{n}=3$), in guinea pig ileum smooth longitudinal smooth muscle (GPILSM) by the muscarinic agonist carbachol ($1.67 \times 10^{-7} \mathrm{M}$) was determined graphically from the dose-response curves ${ }^{b}$ The cardiac calcium channel agonist effect was calculated as the (+)-percentage increase (positive inotropic effect) in contractile force of isolated guinea pig left atrium (GPLA) relative to its basal contractile force in the absence of test compound ($\mathrm{n}=3$ unless otherwise stated). ${ }^{c}$ Data for the racemate $\mathbf{2 b}$ is taken from a previous study. ${ }^{6}$

Experimental Section

General Procedures.

Melting points were determined using a Thomas-Hoover capillary apparatus and are uncorrected. ${ }^{1} \mathrm{H}$ NMR spectra were recorded using a Bruker AM-300 spectrometer, and the assignment of exchangeable protons (NH) was confirmed by the addition of D2O. Infrared spectra (IR) were acquired using a Nicolet 550-FT spectrometer. Microanalyses were performed by the Microanalytical Services Laboratory, Department of Chemistry, University of Alberta. Silica gel column chromatography was carried out using Silicyle 7734 (70-230 mesh) silica gel. Preparative silica gel thin layer chromatography was performed with Macherey-Nagel silica gel. Dihydropyridines 6a-e, ${ }^{6}$ acetal $\mathbf{9}^{18}$ and nitroacetone 19^{19} were prepared according to literature procedures. The methyl, ethyl and isopropyl 3-aminocrotonates 12 were purchased from the Aldrich Chemical Co. whereas, isobutyl and t-butyl 3-aminocrotonates 12 were prepared by passage of anhydrous ammonia through a solution of the alkyl acetoacetate in absolute EtOH according to the procedure of Joslyn et al. ${ }^{20}$

General procedure for the syntheses of alkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-5-pyridincarboxyates 8a-e

A solution of $\mathrm{Li}(t-\mathrm{BuO})_{3} \mathrm{AlH}$ in THF $(1 \mathrm{~mL}$ of 1 M$)$ was added to a solution of the respective pyridyl compound 6a-e (1 mmol) in dry THF $(15 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$ with stirring. After 10 min , a solution of $\mathrm{MeOCOCl}(94.5 \mathrm{mg}, 1 \mathrm{mmol})$ in THF (10 mL) was added drop wise via a syringe during 10 min , and the reaction was allowed to proceed at $-78{ }^{\circ} \mathrm{C}$ for 5 h with stirring. The reaction mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$, a saturated solution of aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$ was added to quench the reaction, and the mixture was poured onto water $(50 \mathrm{~mL})$. Extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 25 \mathrm{~mL})$, drying the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ extract $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and removal of the solvent in vacuo afforded a yellow residue. Purification by silica gel column chromatography using EtOAchexane ($3: 7, \mathrm{v} / \mathrm{v}$) as eluant yielded the respective product 8a-e. The physical, spectral and microanalytical data for 8a-e are listed below. In the ${ }^{1} \mathrm{H}$ NMR spectral data, the protons of the C 4 1,4-dihydropyridyl ring system are designated by prime numbers.

Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-5pyridinecarboxyate (8a).

Yield: 14%; mp 133-136 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3330(\mathrm{NH}), 1721$ (NCO2Me), $1692\left(\mathrm{CO}_{2} \mathrm{Me}\right)$, 1507, $1312\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d} 6,78{ }^{\circ} \mathrm{C}$): $\delta 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-6 \mathrm{CH}_{3}\right), 2.48\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-2 \mathrm{CH}_{3}\right)$, $3.69\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right), 3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 4.12-4.20(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ '), 4.73 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), $5.50-$ 5.60 (m, 1H, H-5'), 5.77 (d, J = $8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 6.42 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$ '), 9.6 (s, 1H, NH). Anal. calcd. for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 55.01, H, 5.48, N 12.03. Found: C 54.73, H 5.01, N 12.14.

Ethyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-5pyridinecarboxyate (8b).

Yield: 16%; mp 122-125 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3343(\mathrm{NH}), 1718\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1693\left(\mathrm{CO}_{2} \mathrm{Et}\right), 1510,1312$ $\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 78{ }^{\circ} \mathrm{C}$): $\delta 1.24\left(\mathrm{t}, J=7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH} 3\right), 2.30(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-6$ CH3), 2.50 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{C}-2 \mathrm{CH} 3$), 3.71 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{NCO} 2 \mathrm{CH} 3$), $3.98-4.05$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}_{3}$), 4.12-4.20 (m, 2H, H-6'), 4.70 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), $5.50-5.60(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ '), 5.70 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4$ '), 6.47 (s, $1 \mathrm{H}, \mathrm{H}-2$ '), $9.30(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{C} 56.14, \mathrm{H}, 5.81, \mathrm{~N} 11.55$. Found: C 56.51, H 5.33, N 11.53.

Isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-5-pyridinecarboxyate (8c).

Yield: 22%; mp 102-104 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3310(\mathrm{NH}), 1722(\mathrm{NCO} 2 \mathrm{Me}), 1693\left(\mathrm{CO}_{2} \mathrm{Pr}-\mathrm{i}\right), 1503$, $1312\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}_{-\mathrm{d}}^{6}, 7{ }^{\circ} \mathrm{C}\right)$: $\delta 1.25$ and 1.29 [two overlapping $\mathrm{d}, J=7 \mathrm{~Hz}, 6 \mathrm{H}$, $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-6 \mathrm{CH}_{3}\right), 2.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-2 \mathrm{CH}_{3}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 4.22-4.40(\mathrm{~m}$, $2 \mathrm{H}, \mathrm{H}-6$ '), $4.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-4), 5.05-5.12\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 5.59-5.76(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5$ '), $5.88(\mathrm{~d}, \mathrm{~J}$
$\left.=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 6.55\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 9.23(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 57.29, H, 6.14, N 11.13. Found: C 57.34, H 5.68, N 10.81 .

Isobutyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-5pyridinecarboxyate (8d).

Yield: 17%; mp 130-132 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3325(\mathrm{NH}), 1716\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Bu}-\mathrm{i}\right), 1508$, $1312\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 78{ }^{\circ} \mathrm{C}\right): \delta 0.95$ and 0.97 [two overlapping d, $J=7.2 \mathrm{~Hz}$, $\left.6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.90-2.05\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-6 \mathrm{CH}_{3}\right), 2.50(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-2$ CH_{3}), $3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 3.86-4.00\left[\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 4.25-4.32(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6$ '), 4.75 (s, 1H, H-4), 5.50-5.63 (m, 1H, H-5'), 5.78 (d, J = 8.2 Hz, 1H, H-4'), 6.49 (s, 1H, H-2'), $9.20(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH})$. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 58.30, H, 6.43, N 10.73. Found: C 58.63, H 6.01, N 11.01.

t-Butyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-1,6-dihydropyridyl)]-5pyridinecarboxyate (8e).

Yield: 16%; mp 119-122 ${ }^{\circ} \mathrm{C}$; IR (KBr): $3306(\mathrm{NH}), 1718\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1691\left(\mathrm{CO}_{2} \mathrm{Bu}-t\right), 1508$, $1312\left(\mathrm{NO}_{2}\right) \mathrm{cm}-1 ; 1 \mathrm{H} \mathrm{NMR}\left(\mathrm{Me}_{2} \mathrm{SO}_{-1} \mathrm{~d}_{6}, 7{ }^{\circ} \mathrm{C}\right): \delta 1.39\left[\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{C}-6 \mathrm{CH}_{3}\right)$, 2.49 (s, 3H, C-2 CH2), 3.78 (s, 3H, NCO NH_{3}), 4.12-4.40 (m, 2H, H-6'), 4.79 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-4$), 5.48$5.68\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 5.78\left(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), $6.45\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2^{\prime}\right), 9.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$. Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 58.30, H, 6.43, N 10.73. Found: C 58.64, H 6.67, N 10.41.

General procedure for the syntheses of 1-methoxycarbonyl-4-substituted-1,4-dihydropyridine-3-carboxaldehydes 11a-c

$\mathrm{Me}_{2} \mathrm{~S}(0.846 \mathrm{~g}, 13.6 \mathrm{mmol})$ and $\mathrm{CuI}(10 \mathrm{mg}, 0.05 \mathrm{mmol})$ were added to a solution of the acetal 9 $(0.151 \mathrm{~g}, 1 \mathrm{mmol})$ in dry THF (20 mL) under a nitrogen atmosphere, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 15 min . After cooling to $-23{ }^{\circ} \mathrm{C}$, a solution of $\mathrm{MeOCOCl}(94.5 \mathrm{mg}, 1 \mathrm{mmol})$ in dry THF (10 mL) was added, followed by addition of a solution of the respective Grignard reagent ($\mathrm{R}^{1} \mathrm{MgBr}, \mathrm{R}^{1}=\mathrm{Me}, n-\mathrm{Bu}, \mathrm{Ph}$) in THF (1.1 mmol of a 1.4 M THF solution) during 10 min , and the reaction was allowed to proceed at $-23^{\circ} \mathrm{C}$ for 4 h with stirring. The reaction mixture was allowed to warm to $25{ }^{\circ} \mathrm{C}$, a solution of 20% aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$ was added, and the mixture was extracted with ether ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were washed with 28% aqueous $\mathrm{NH}_{4} \mathrm{OH}-20 \%$ aqueous $\mathrm{NH}_{4} \mathrm{Cl}(1: 1, \mathrm{v} / \mathrm{v})$ until the aqueous layer was colorless. The organic fraction was washed consecutively with water ($2 \times 15 \mathrm{~mL}$), $5 \% \mathrm{HCl}(20 \mathrm{~mL})$ and then water $(10 \mathrm{~mL})$. The organic fraction was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and the solvent was removed in vacuo at $25^{\circ} \mathrm{C}$ to give a yellow oil that was purified by preparative silica gel thin layer chromatography
using hexane-EtOAc $(5: 1, \mathrm{v} / \mathrm{v})$ as the development solvent to afford the respective aldehyde 11ac. Products 11a-c were used immediately for the subsequent preparation of compounds 14-18a-c. The physical, spectral and microanalytical data for 11a-c are listed below.

1-Methoxycarbonyl-4-methyl-1,4-dihydropyridine-3-carboxaldehyde (11a).

Yield: yellow oil, $55 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 62{ }^{\circ} \mathrm{C}\right): \delta 1.12\left(\mathrm{~d}, \mathrm{~J}=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{C}-4 \mathrm{CH}_{3}\right)$, 3.25-3.40 (m, 1H, H-4), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 5.10-5.18(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 6.76(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{H}-6)$, 7.58 (s, 1H, H-2), 9.38 (s, 1H, CHO).

4-n-Butyl-1-methoxycarbonyl-1,4-dihydropyridine-3-carboxaldehyde (11b).

Yield: yellow oil, $66 \% ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right)$: $\delta 0.85\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.20-1.40 (m, 4H, CH2 CH2 $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.50-1.53 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), $3.34-3.40(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 4), $3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{3}\right), 5.00-5.15(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 6.70-6.82$ (br m, $1 \mathrm{H}, \mathrm{H}-6$), 7.58-7.68 (br s, $1 \mathrm{H}, \mathrm{H}-2), 9.40(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO})$.

1-Methoxycarbonyl-4-phenyl-1,4-dihydropyridine-3-carboxaldehyde (11c).

Yield: yellow oil, 47%; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 25{ }^{\circ} \mathrm{C}\right.$): $\delta 3.97\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NCO}_{2} \mathrm{CH}_{3}\right)$, $4.51(\mathrm{~d}, \mathrm{~J}=4.2$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{H}-4), 5.20-5.33(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-5), 6.90-7.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-6), 7.17-7.78$ (m, 6H, H-2, phenyl hydrogens), 9.30 and $9.36(\mathrm{~s}, 1 \mathrm{H}$ total, CHO$)$.

General procedure for the syntheses of alkyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-substituted-1,4-dihydropyridyl)]-5-pyridinecarboxylates 14-18a-c

A solution of the respective aldehyde 11a-c $\left(\mathrm{R}^{1}=\mathrm{Me}, n-\mathrm{Bu}, \mathrm{Ph}\right)(1 \mathrm{mmol})$, the respective alkyl 3-aminocrotonate $12\left(\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et}, i-\mathrm{Pr}, i-\mathrm{Bu}, t-\mathrm{Bu}\right)(1 \mathrm{mmol})$ and nitroacetone $\mathbf{1 3}$ (1 mmol) in dry EtOH (100 mL) was heated at reflux for 12 h . Removal of the solvent in vacuo, and purification of the residue by preparative silica gel thin layer chromatography using hexaneEtOAc (1:1, v/v) as development solvent afforded the respective product 14-18a-c, for which the physical, spectral, and microanalytical data are listed below.

Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-methyl-1,4-dihydropyridyl)]-5-pyridinecarboxylate (14a).

Yield: 4\%; IR (KBr): $3295(\mathrm{NH}), 1720\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1685\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1507,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1.8:1) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 1.02-1.22\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}-4\right.$ ' CH_{3}), 2.04 and 2.23 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.38 and 2.43 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.83-2.90 (m, 1 H , H-4'), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}$), 3.79 and 3.82 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), $5.05-5.07(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4$, H-5'), 6.48-6.66 (m, 1H, H-6'), 6.72 (br s, 1H, H-2'), 9.65 and 9.78 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 56.19, H 5.82, N 11.56. Found: C 55.87, H 5.65, N 11.14.

Ethyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-methyl-

 1,4-dihydropyridyl)]-5-pyridinecarboxylate (15a).Yield: 5\%; IR (KBr): $3300(\mathrm{NH}), 1712\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1689\left(\mathrm{CO}_{2} \mathrm{Et}\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 2.1:1) as determined from the integrals for the NCO2Me resonances: $\delta 0.89-1.10\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}-\mathbf{4}^{\prime} \mathrm{CH}_{3}\right)$, 1.18$1.38\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 2.08 and 2.37 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.39 and 2.45 (two s, 3 H total, C-2 CH_{3}), 2.75-2.88 (m, 1H, H-4'), 3.69 and 3.70 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 4.03-4.22 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.93-5.12 (m, 2H, H-4, H-5'), 6.46-6.58 (br m, 1H, H-6'), 6.63 (br s, 1H, H-2'), 9.42 and 9.58 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 57.28, H 6.14, N 11.13. Found: C 56.92, H 6.47, N 11.41.

Isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-methyl-1,4-dihydropyridyl)]-5-pyridinecarboxylate (16a).

Yield: 7\%; IR (KBr): $3315(\mathrm{NH}), 1712\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Pr}-\mathrm{i}\right), 1504,1312\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1.1:1) as determined from the integrals for the NCO_{2} Me resonances: $\delta 0.99-1.06\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}-4{ }^{\prime} \mathrm{CH}_{3}\right), 1.23$ [d, $J=6.0 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 1.96 and 2.07 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.35 and 2.41 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.80-2.90 (m, $1 \mathrm{H}, \mathrm{H}-4^{\prime}$), 3.80 and 3.82 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 4.805.19 [m, 3H, H-4, H-5', $\left.\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 6.38-6.52 (m, 1H, H-6'), 6.61 (br s, $1 \mathrm{H}, \mathrm{H}-2^{\prime}$), 9.32 and 9.55 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 58.30, H 6.43, N 10.74. Found: C 58.60, H 6.67, N 10.31 .

Isobutyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-methyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (17a).

Yield: 6\%; IR (KBr): $3300(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1685\left(\mathrm{CO}_{2} \mathrm{Bu}-i\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}\right.$), mixture of two rotamers and/or diastereomers (ratio of 3.3:1) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.85-1.20\left[\mathrm{~m}, 9 \mathrm{H}, \mathrm{C}-4 \mathrm{CH}_{3}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.91-1.98[\mathrm{~m}, 1 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 2.22 and 2.27 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.41 and 2.43 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.782.89 (m, 1H, H-4'), 3.69 and 3.71 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), $3.80-3.87$ [m, $2 \mathrm{H}, \mathrm{CH} 2 \mathrm{CH}(\mathrm{CH} 3) 2$], $4.88-$ 5.05 (m, 2H, H-4, H-5'), 6.36-6.53 (m, 1H, H-6'), 6.62 (br s, 1H, H-2'), 9.51 and 9.62 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 59.25, H 6.71, N 10.36. Found: C 58.93, H 6.39, N 10.41.

t-Butyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-methyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (18a).

Yield: 6\%; IR (KBr): $3300(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Bu}-t\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25{ }^{\circ} \mathrm{C}\right.$), mixture of two rotamers and/or diastereomers (ratio of $1.8: 1$) as determined from the integrals for the NCO_{2} Me resonances: $\delta 0.90-1.04\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{C}-4^{\prime} \mathrm{CH}_{3}\right), 1.35\left(\mathrm{~s}, 9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right.$], 2.30 and 2.39 (two $\mathrm{s}, 3 \mathrm{H}$ total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.41 and 2.45 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.78-2.92 (m, 1H, H-4'), 3.69 and 3.70 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 4.86-5.01 (m, 2H, H-4, H-5'), 6.34-6.52 (m, 1H, H-6'), 6.58 (br s, 1H, H-2'), 9.50 and 9.60 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 59.25, H6.71, N 10.36. Found: C 58.61, H 6.02, N 9.91.

Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-n-butyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (14b).

Yield: 6\%; IR (KBr): $3300(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1507,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1.2:1) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.78-0.88\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.10-1.70 (m, 6 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.17 and 2.26 (two s, 3 H total, C-6 CH_{3}), 2.30 and 2.49 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), $2.84-$ $2.98\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4\right.$ '), $3.71\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 3.80 and 3.83 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), $4.90-4.98(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-$ 4, H-5'), 6.43-6.61 (m, 1H, H-6'), 6.70 (br s, 1H, H-2'), 9.48 and 9.67 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 59.25, H 6.71, N 10.36. Found: C 58.96, H 6.94, N 10.02 .

Ethyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-n-butyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (15b).

Yield: 10%; IR (KBr): $3315(\mathrm{NH}), 1712\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1688\left(\mathrm{CO}_{2} \mathrm{Et}\right), 1515,1308\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:2.5) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.78-0.85\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.05-1.65 (m, 9 H , $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.16 and 2.24 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.30 and 2.43 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.77-2.85 (m, 1H, H-4'), 3.78 and 3.81 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 4.02-4.17 (m, 2 H , $\mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 4.83-5.09 (m, 2H, H-4, H-5'), 6.42-6.63 (m, 1H, H-6'), 6.68 (br s, 1H, H-2'), 9.40 and 9.61 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{21} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 60.13, H 6.97, N 10.02. Found: C 60.43, H 7.12, N 9.85 .

Isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-n-butyl-1,4-dihydropyridyl)]-5-pyridinecarboxylate (16b).

Yield: 12%; IR (KBr): $3325(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1692\left(\mathrm{CO}_{2} \mathrm{Pr}-\mathrm{i}\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:2.6) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.85-1.16\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.25-1.61(\mathrm{~m}$, $6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.26 and 2.32 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.38 and 2.45 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.82-2.91 (m, 1H, H-4'), 3.82 and 3.84 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 4.82-5.17 (m, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{H}-4$, H-5'), 6.39-6.51 (m, 1H, H-6'), 6.68 (br s, 1H, H-2'), 9.49 and 9.51 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 60.95, H 7.20, N 9.69. Found: C 60.89, H 7.01, N 9.92.

Isobutyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-n-butyl-1,4-dihydropyridyl)]-5-pyridinecarboxylate (17b).

Yield: 8\%; IR (KBr): $3310(\mathrm{NH}), 1712\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Bu}-i\right), 1512,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:2.1) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.73-0.95\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.26-1.58$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.84-2.09 [m, 1H, $\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$], 2.20 and 2.35 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.40 and 2.44 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 2.80-2.91 (m, 1H, H-4'), 3.71 and 3.78 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 3.84-3.99 [m, 2H, CH2CH(CH3$\left.)_{2}\right], 4.90-5.08(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$ '), 6.38-6.52 (m, 1H, H-6'), 6.69 (br s, 1H, H-2'), 9.45 and 9.61 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 61.72, H 7.43, N 9.39. Found: C 61.57, H 7.68, N 9.01.
t-Butyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-n-butyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (18b).

Yield: 5\%; IR (KBr): $3300(\mathrm{NH}), 1712\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1691\left(\mathrm{CO}_{2} \mathrm{Bu}-t\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:1.9) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.78-0.99\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, 1.15-1.57 (m, 15 H , $\mathrm{CO}_{2} \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.30 and 2.38 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.43 and 2.49 (two s, 3 H total, C-2 CH_{3}), 2.72-2.88 (m, 1H, H-4'), 3.76 and 3.80 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 4.86-5.04 (m, 2H, H-4, H5^{\prime}), 5.70-5.80 (m, 1H, H-6'), 6.52-6.60 (m, 1H, H-2'), 9.38 and 9.52 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 61.72, H 7.43, N 9.39. Found: C 61.54, H 7.23, N 9.44.

Methyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-phenyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (14c).

Yield: 5\%; IR (KBr): $3300(\mathrm{NH}), 1715\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Me}\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:1.2) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 2.11$ and 2.24 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.45 and 2.48 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), $3.59\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{3}\right.$), 3.78 and 3.80 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 3.89-3.99 (m, $1 \mathrm{H}, \mathrm{H}-4$), 4.86-5.15 (m, 2H, H-4, H-5'), 6.50-6.68 (m, 1H, H-6'), 6.90-7.48 (m, 6H, H-2', phenyl hydrogens), 9.40 and 9.48 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 62.11, H 5.45, N 9.87. Found: C 61.92, H 5.12, N 10.13 .

Ethyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-phenyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (15c).

Yield: 6%; IR (KBr): $3300(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1692\left(\mathrm{CO}_{2} \mathrm{Et}\right), 1513,1313\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:1.3) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 1.10-1.35\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.10$ and 2.25 (two s, 3 H total, $\mathrm{C}-6$ CH_{3}), 2.42 and 2.47 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 3.80 and 3.86 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 3.90-4.20 (m, $3 \mathrm{H}, \mathrm{CO}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{H}-4$ '), 4.70-5.09 (m, 2H, H-4, H-5'), 6.50-6.63 (m, 1H, H-6'), 6.92-7.55 (m, 6H, H-2', phenyl hydrogens), 9.40 and 9.51 (two br s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 62.86, $\mathrm{H} 5.73, \mathrm{~N}$ 9.56. Found: C 62.81, H 5.45, N 9.29.

Isopropyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-phenyl-1,4-dihydropyridyl)]-5-pyridinecarboxylate (16c).

Yield: 7\%; IR (KBr): $3300(\mathrm{NH}), 1712\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Pr}-\mathrm{i}\right), 1513,1313\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:1.6) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 1.11-1.21\left[\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 2.11$ and 2.18 (two s, 3 H total, $\mathrm{C}-6$ CH_{3}), 2.43 and 2.45 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 3.80 and 3.84 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 3.86-3.92 (m, $1 \mathrm{H}, \mathrm{H}-4$ '), 4.70-5.11 (m, 3H, CH(CH3 $)_{2}$, H-4, H-5'), 6.51-6.65 (m, 1H, H-6'), 6.95-7.45 (m, 6H, H-2', phenyl hydrogens), 9.33 and 9.45 (two s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{24} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{6}: \mathrm{C} 63.56, \mathrm{H} 6.00, \mathrm{~N}$ 9.26. Found: C 63.24, H 5.77, N 9.57.

Isobutyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-phenyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (17c).

Yield: 6\%; IR (KBr): $3300(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Bu}-i\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:1.5) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 0.94-1.00\left[\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right], 1.96-2.05\left[\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 2.12 and 2.18 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.46 and 2.51 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 3.83 and 3.85 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), 3.80-3.99 [m, 3H, $\left.\mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}, \mathrm{H}-4^{\prime}\right], 4.72-5.12(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4, \mathrm{H}-5$ '), 6.52-6.65 (m, 1H, H-6'), 6.98-7.40 (m, 6H, H-2', phenyl hydrogens), 9.38 and 9.51 (two s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 64.23, H 6.25, N 8.98. Found: C 63.99, H 6.34, N 8.71.
t-Butyl 1,4-dihydro-2,6-dimethyl-3-nitro-4-[3-(1-methoxycarbonyl-4-phenyl-1,4-dihydropyridyl)]-5pyridinecarboxylate (18c).

Yield: 7\%; IR (KBr): $3300(\mathrm{NH}), 1710\left(\mathrm{NCO}_{2} \mathrm{Me}\right), 1690\left(\mathrm{CO}_{2} \mathrm{Bu}-t\right), 1510,1310\left(\mathrm{NO}_{2}\right) \mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{Me}_{2} \mathrm{SO}-\mathrm{d}_{6}, 25^{\circ} \mathrm{C}$), mixture of two rotamers and/or diastereomers (ratio of 1:1.5) as determined from the integrals for the $\mathrm{NCO}_{2} \mathrm{Me}$ resonances: $\delta 1.35$ [s, $\left.9 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}\right], 2.19$ and 2.25 (two s, 3 H total, $\mathrm{C}-6 \mathrm{CH}_{3}$), 2.38 and 2.49 (two s, 3 H total, $\mathrm{C}-2 \mathrm{CH}_{3}$), 3.75 and 3.78 (two s, 3 H total, $\mathrm{NCO}_{2} \mathrm{CH}_{3}$), $3.88-3.98(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-$ 4'), 4.78-5.12 (m, 2H, H-4, H-5'), 6.55-6.68 (m, 1H, H-6'), 6.85-7.40 (m, 6H, H-2', phenyl hydrogens), 9.40 and 9.55 (two s, 1 H total, NH). Anal. calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{3} \mathrm{O}_{6}$: C 64.23, H 6.25, N 8.98. Found: C 64.69, H 6.09, N 9.14.

In vitro calcium channel antagonist and agonist assays

Calcium channel antagonist activity was determined as the molar concentration of the test compound required to produce 50% inhibition of the muscarinic receptor-mediated (carbachol, $\left.1.67 \times 10^{-7} \mathrm{M}\right) \mathrm{Ca}^{2+}$-dependent contraction (tonic response) of guinea pig ileum longitudinal smooth muscle (GPILSM) using the procedure previously reported. ${ }^{9}$ The IC_{50} value (\pm SEM), n $=3$) was determined graphically from the dose-response curve.

Calcium channel agonist activity (positive inotropic effect on heart) was determined as the percentage (\%) increase in contractile force of isolated guinea pig left atrium (GPLA) induced by a $4.46 \times 10^{-5} \mathrm{M}$ (maximum concentration used) test compound concentration relative to its basal contractile force in the absence of test compound. ${ }^{6}$

Acknowledgements

We thank the Canadian Institutes of Health Research for financial support of this research (Grant No: MOP-8892), and the Islamic Republic of Iran, Ministry of Health \& Medical Education, for a six-month scholarship award to one of us (M.A.).

References

1. Langs, D. A.; Strong, P. D.; Triggle, D. J. J. Comput.-Aided Mol. Des. 1990, 2, 215.
2. Langs, D. A.; Kwon, Y. W.; Strong P. D.; Triggle, D. J. J. Comput.-Aided Mol. Des. 1991, 5, 95.
3. Magner, P.; Coburn, R. A.; Solo, A. J.; Triggle, D. J.; Rothe, H. Drug Design Discovery 1992, 8, 273.
4. Gross, R.; Kayser, M.; Schramm, M.; Taniel, R. Thomas, G. Arch. Int. Pharmacodyn. Ther. 1985, 277, 203.
5. Preuss, K. C.; Brooks, H. L.; Gross G. J.; Warltier, D. C. Basic Res. Cardiol. 1985, 80, 326.
6. Vo, D.; Matowe, W. C.; Ramesh, M.; Iqbal, N.; Wolowyk, M. W.; Howlett, S. E.; Knaus, E. E. J. Med. Chem. 1995, 38, 2851.
7. Langs, D. A.; Triggle, D. J. Mol. Pharmacol. 1985, 27, 544.
8. Iqbal, N.; Akula, M. R.; Vo, D.; Matowe, W. C.; McEwen, C.-A.; Wolowyk, M. W.; Knaus, E. E. J. Med. Chem. 1998, 141, 827.
9. Dagnino, L.; Li-Kwong-Ken, M. C.; Wynn, H.; Wolowyk, M. W.; Triggle, C. R.; Knaus, E. E. J. Med. Chem. 1987, 30, 640.
10. Sausins, A.; Duburs, G. Heterocycles 1988, 27, 291.
11. Akiba, K.; Iseki, Y.; Wada, M. Tetrahedron Lett. 1982, 23, 429.
12. Comins, D. L.; O’Connor, S. Adv. Heterocycl. Chem. 1988, 44, 199.
13. Loev, B.; Goodman, M. M.; Snader, K. M.; Tedeschi, R.; Macko, E. J. Med. Chem. 1974, 17, 956.
14. Piers, E.; Soucy, M. Can. J. Chem. 1974, 52, 3563.
15. Comins, D. L.; Abdullah, A. H. J. Org. Chem. 1982, 47, 4315.
16. Ramesh, M.; Matowe, W. C.; Knaus, E. E.; Wolowyk, M. W. Drug Design Discovery 1992, 8, 313.
17. Comins, D. L.; Smith, R. K.; Stroud, E. D. Heterocycles 1984, 22, 339.
18. Mangeney, P.; Gosmini, R.; Raussou, S.; Commercon, M.; Alexakis, A. J. Org. Chem. 1994, 59, 1877.
19. Hurd, C. D.; Nilson, M. E. J. Org. Chem. 1955, 20, 927.
20. Joslyn, A. F.; Luchowski, E.; Triggle, D. J. J. Med. Chem. 1988, 31, 1489.
