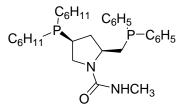
Easy access to *cis*-1,3-disubstituted cyclopentane 1,4-diphosphines

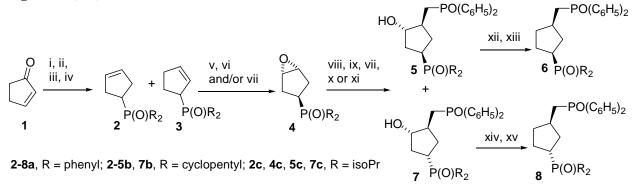
Pelayo Camps*, Gisela Colet, and Santiago Vázquez

Laboratori de Química Farmacèutica (Unitat Associada al CSIC), Facultat de Farmàcia, Universitat de Barcelona, Av. Diagonal 643, E-08028, Barcelona, Spain E-mail: camps@farmacia.far.ub.es

Dedicated to Prof. Dr. Roberto A. Rossi on the occasion of his 60th anniversary (received 19 Dec 02; accepted 07 Mar 03; published on the web 24 Mar 03)


Abstract

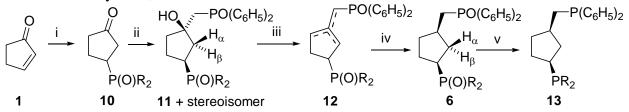
cis-1-(Diphenylphosphino)-3-(diphenylphosphinomethyl)cyclopentane (13a) and the corresponding dicyclopentylphosphino derivative 13b have been readily obtained in high yield from 2-cyclopentenone by a five-step sequence which takes advantage of the electrophilic character of positions 1 and 3 of 2-cyclopentenone to introduce the substituents, while their relative *cis*-configuration is established by diastereoselective hydrogenation of the mixture of isomeric alkenes 12a or 12b.


Keywords: Addition reactions, carbocycles, diastereoselectivity, hydrogenation, phosphorus

Introduction

As part of our current interest on the synthesis of carbocyclic analogs of *cis*-MCCPM (Figure 1),¹ we have recently described the synthesis of bisphosphinoyl compounds **5a-c** in racemic form (Scheme 1).² Also, compound (**6a**) was prepared by dehydroxylation of **5a** by using the Barton procedure. However, the synthesis of these compounds has serious drawbacks: (a) multi-step reaction sequence; (b) low overall yield; and (c) stereoselectivity problems in the crucial step (nucleophilic opening of epoxide **4** with the lithium derivative of methyldiphenylphosphine oxide, and (d) column chromatography of the acetates derived from the mixture of **5** and **7** was required to isolate the desired minor *cis*-stereoisomers.

Figure 1. (*S*,*S*)-*cis*-MCCPM.


Scheme 1. Reagents and conditions: (i) ClPR₂, AcOH, 4 Å molecular sieves, r.t., 2 h; (ii) NaBH₄, MeOH; (iii) MsCl, Et₃N, DMAP (10%), CH₂Cl₂; (iv) Pyrolysis; (v) *m*-Chloroperbenzoic acid, CH₂Cl₂; (vi) KOH, EtOH; (vii) Silica gel column chromatography; (viii) Lithium derivative of methyldiphenylphosphine oxide (**9**) [from **9** and 1.6 M *n*-BuLi (in hexanes)], THF, r.t. (3 h) and reflux (15 h); (ix) Ac₂O, reflux, 2 h; (x) NaMeO, MeOH, reflux, 2 h; (xi) KCN, EtOH, reflux, 12 h; (xii) Thiocarbonyldiimidazole, toluene, reflux, 1 h; (xiii) *n*-Bu₃SnH, AIBN, toluene, reflux, 1 h. (xiv) Thiocarbonyldiimidazole, CH₂Cl₂, reflux, 4 h; (xv) *n*-Bu₃SnH, AIBN, benzene, reflux, 6 h.

Results and Discussion

Herein we describe a straightforward diastereoselective synthesis of **6a** and the corresponding 3-(dicyclopentylphosphinoyl) derivative (**6b**), starting from 2-cyclopentenone (**1**) (Scheme 2) and their conversion into the corresponding diphosphines, **13a** and **13b**, respectively. Since positions 1 and 3 of 2-cyclopentenone are electrophilic, both substituents of the desired diphosphines (**13**) could be introduced by appropriate nucleophilic addition reactions. It is known that chlorodiphenylphosphine reacts with acyclic α , β -unsaturated ketones in anhydrous acetic acid to give a β -(diphenylphosphinoyl)ketone,³ while we have recently described² the synthesis of **10a** and **10b** by using the same kind of reaction. Also, configurationally stable lithiated P-chiral disubstituted phosphine oxides have been added (Michael reaction) with high diastereoselectivity to 2-cyclopentenone.⁴ Moreover, examples of nucleophilic additions of the lithium derivative of methyldiphenylphosphine oxide (**9**) and related derivatives to ketones are also known.⁵

Initial attempts to carry out the nucleophilic addition of the lithium derivative of **9** to cyclopentanone (**10a**) failed, probably due to the water present in compound (**10a**). When **10a** was made anhydrous by azeotropic distillation of water with toluene and then it was reacted with the lithium derivative of **9**, the corresponding addition product (**11a**) was obtained in high yield.

Only one stereoisomer, probably the one derived from the attack of the nucleophile on the less hindered carbonyl face, was observed.

6a, 10-13a, R = C₆H₅; 6b, 10-13b, R = cyclopentyl

Scheme 2. Reagents and conditions: (i) see reference 2; (ii) Lithium derivative of methyldiphenylphosphine oxide (9) [from 9 and 1.6 M *n*-BuLi (in hexanes)], THF, r.t. (3 h) and reflux (15 h); (iii) Concentrated H₂SO₄, THF, reflux, 3-6 d; (iv) H₂, 5% Pd-C, MeOH, 1 atm, 3-6 d; (v) HSiCl₃, Et₃N, CH₃CN, reflux, 3 h.

Once the diphenylphosphinoyl and diphenylphosphinoylmethyl substituents were introduced, the hydroxyl group of compound **11a** was removed in order to establish the relative *cis*-configuration of the substituents. To this end, compound **11a** was dehydrated, which required quite drastic conditions (2 mol of concentrated H_2SO_4 per mol of **11a**, in THF under reflux for 3 days). The product thus obtained (93% yield) consisted of a mixture of regio- and stereo-isomers (**12a**) which was submitted without separation to hydrogenation under standard conditions. Fortunately, from the hydrogenation, only compound **6a** was obtained in 83% yield. The relative *cis*-configuration of this compound was assigned by comparison of its ¹H and ¹³C NMR data with those of a reference sample of **6a**, prepared by the synthetic sequence of scheme 1, whose relative *cis*-configuration had unequivocally been established by X-ray diffraction analysis.² Moreover, the ¹H and ¹³C NMR data of **6a** differ from those of the corresponding *trans*-stereoisomer (**8a**, scheme 1).²

Similarly, reaction of $10b^2$ with the lithium derivative of 9 gave in good yield a mixture of 11b and its stereoisomer in an approximate ratio of 5:1, respectively. The main component was assumed to be 11b. Dehydration of the mixture of 11b and its stereoisomer gave a regio- and stereo-isomeric mixture of alkenes 12b, which on hydrogenation gave 6b, as a highly hygroscopic solid, whose melting point could not be determined. The relative *cis*-configuration of 6b was established by comparison of its ¹H and ¹³C NMR spectra with those of 6a. Compounds 6a and 6b were reduced in high yield to the corresponding diphosphines 13a and 13b by reaction with trichlorosilane.

The new compounds **11a**, **11b** + stereoisomer, and **6b** have been fully characterized by spectroscopic means (IR, ¹H, ¹³C and ³¹P NMR, MS) and elemental analysis, while diphosphines **13a** and **13b** have been characterized by NMR spectroscopy (¹H, ¹³C and ³¹P). In general, assignment of the NMR spectra has been carried out with the aid of COSY ¹H/¹H, HETCOR ¹H/¹³C and NOESY experiments.

In conclusion, the unexpected stereoselective hydrogenation of the mixture of alkenes **12a** and **12b** to the *cis*-derivatives **6a** and **6b**, opens the way to the synthesis of a new family of *cis*-1,3-disubstituted cyclopentane 1,4-diphosphines, which might be of interest to prepare new chiral catalysts. Work is in progress to prepare and isolate Rh (I) complexes derived from diphosphines **13a** and **13b**, to study their catalytic activity in hydrogenation reactions.

Experimental Section

General Procedures. Melting points were determined with a MFB 595010 M Gallenkamp melting point apparatus. 500 MHz ¹H NMR spectra were recorded on a Varian VXR 500 spectrometer, 75.4 MHz ¹³C NMR spectra were taken on a Varian Gemini 300 and 121.4 MHz ³¹P NMR on a Varian Unity 300 Plus, always in CDCl₃ solution. ¹H and ¹³C NMR chemical shifts (δ) are reported in ppm with respect to internal tetramethylsilane (TMS) and ³¹P NMR chemical shifts (δ) are reported in ppm relative to 85% H₃PO₄ as external standard. The multiplicity of the signals is: s, singulet; d, doublet; t, triplet; m, multiplet. For the different compounds, the terms H_{α} or H_{β} are assigned to hydrogen atoms which are *cis* or *trans* relative to the reference substituent (usually at position 1), respectively. IR spectra were recorded on a FT/IR Perkin-Elmer spectrometer, model 1600; only significant absorption bands are given. Routine MS spectra were taken on a Hewlett-Packard 5988A spectrometer, the sample was introduced directly or through a gas chromatograph, Hewlett-Packard model 5890 Series II, equipped with a 30-meter HP-5 (5% diphenyl-95% dimethyl-polysiloxane) column and the electron impact technique (70 eV). Only significant ions are given: those with higher relative abundance, except for the ions with higher m/z values. NMR and routine MS spectra were performed at the Serveis Científico-Tècnics of the University of Barcelona, while elemental analyses were carried out at the Microanalysis Service of the IIQAB (CSIC, Barcelona, Spain).

c-3-(Diphenylphosphinoyl)-1-[(diphenylphosphinoyl)methyl]-*r*-1-cyclopentanol (11a). To a cold (ice-bath) solution of methyldiphenylphosphine oxide (98%, 580 mg, 2.63 mmol) in anhydrous THF (15 mL) was added dropwise *n*-butyllithium (2.36 mL, 1.6M in hexanes, 3.78 mmol) and the suspension was stirred at 0°C for 45 min. The suspension was cooled to -78° C and a solution of anhydrous ketone **10a** (747 mg, 2.63 mmol, azeotropic distillation of the water content with toluene in a Dean-Stark equipment) in THF (25 mL) was added dropwise. After 3 h at room temperature, the mixture was heated under reflux for 15 h. The mixture was allowed to cool to room temperature, saturated aqueous solution of NH₄Cl (19 mL) was added, and the organic phase was separated and evaporated to dryness *in vacuo*. The residue was taken in H₂O (35 mL) and the solution was extracted with CH₂Cl₂ (3×37 mL). The combined organic phases were dried (Na₂SO₄), filtered and concentrated *in vacuo* to give **11a** (950 mg, 72% yield) as an orange-brown viscous oil. The analytical sample of **11a** was obtained as a colorless solid by crystallization (ethyl acetate), m.p. 179–180°C. IR (KBr) 3425 (OH st), 1197, 1158, 1119 (P=O

st) cm⁻¹; ¹H NMR 7.81–7.63 (complex signal, 8H, Ar-H_{ortho}), 7.49–7.36 (complex signal, 12H, Ar-H_{meta}, Ar-H_{para}), 5.80–5.20 (broad signal, 1H, OH), 3.01–2.92 (m, 1H, 3-H), 2.82 (dd, 1H, *J*=15.0 Hz, *J*=12.0 Hz) and 2.76 (dd, 1H, *J*=15.0 Hz, *J*=11.0 Hz) (CH₂-P), 2.52 (ddd, 1H, *J*=19.0 Hz, *J*=14.5 Hz, *J*"=12.0 Hz, 2-H_β), 2.10–1.95 (complex signal, 2H, 2-H_α, 4-H_α), 1.82–1.70 (complex signal, 3H, 4-H_β, 5-H_α, 5-H_β); ¹³C NMR 134.4 (C, d, ¹*J*_{CP}=98.2 Hz), 134.0 (C, d, ¹*J*_{CP}=98.2 Hz), 132.1 (C, d, ¹*J*_{CP}=98.8 Hz), 131.6 (C, d, ¹*J*_{CP}=98.3 Hz) (Ar-C_{*ipso*}), 131.7 (2 CH, d, ⁴*J*_{CP}=2.2 Hz), 131.4 (CH, d, ⁴*J*_{CP}=2.2 Hz) and 131.3 (CH, d, ⁴*J*_{CP}=2.5 Hz) (Ar-CH_{para}), 130.8 (CH, d, ²*J*_{CP}=9.1 Hz), 130.6 (CH, d, ²*J*_{CP}=9.6 Hz) and 130.5 (CH, d, ²*J*_{CP}=10.2 Hz) (Ar-CH_{ortho}), 128.6 (2 CH, d, ³*J*_{CP}=11.1 Hz), 128.4 (CH, d, ³*J*_{CP}=11.2 Hz) and 128.3 (CH, d, ³*J*_{CP}=11.7 Hz,) (Ar-CH_{meta}), 78.9 (C, t, ²*J*_{CP}=³*J*_{CP}=2.0 Hz, C1), 41.6 (CH₂, t, ²*J*_{CP}=³*J*_{CP}=5.6 Hz, C5), 39.8 (CH₂, broad s, C2), 38.6 (CH₂, d, ¹*J*_{CP}=70.3 Hz, CH₂-P), 34.3 (CH, d, ¹*J*_{CP}=72.5 Hz, C3), 23.7 (CH₂, s, C4); ³¹P NMR 32.3 [PO(C₆H₅)₂], 22.0 [CH₂PO(C₆H₅)₂]; MS (EI), m/z (%): 500 (M⁺, 3), 299 [[M–PO(C₆H₅)₂]⁺, 76], 281 [[M–H₂O–PO(C₆H₅)₂]⁺, 20], 215 [[CH₂PO(C₆H₅)₂]⁺, 34], 202 (46), 201 [[PO(C₆H₅)₂]⁺, 100]. Anal. Calcd. for C₃₀H₃₀O₃P₂: C, 71.99; H; 6.05. Found; C, 72.04; H, 6.11.

Mixture of *c*-3-(dicyclopentylphosphinoyl)-1-[(diphenylphosphinoyl)methyl]-*r*-1- cyclopentanol (11b) and t-3-stereoisomer. From methyldiphenylphosphine oxide (98%, 4.19 g, 19.0 mmol) in anhydrous THF (100 mL), n-butyllithium (1.6M in hexanes, 19.0 mL, 30.4 mmol) and a solution of anhydrous ketone 10b (5.0 g, 18.6 mmol) in THF (100 mL) and following the procedure described for 10a, a mixture of 11b and its stereoisomer in the approximate ratio 11b: stereoisomer of 5:1, was obtained (6.57 g, 73% yield) as a brown foamy solid. The analytical sample of this mixture was obtained as a colorless solid by crystallization (ethyl acetate), m.p. 163–164°C. IR (KBr) 3420 (OH st), 1157, 1119 (P=O st) cm⁻¹. MS (EI), m/z (%): 484 (M⁺, 2), 466 $[(M-H_2O)^+, 1], 416 [(M-C_5H_8)^+, 9], 347 [(M-C_5H_8-C_5H_9)^+, 16], 299 {[M-PO(C_5H_9)_2]^+, 16], 299 }$ 98}, 283 { $[M-PO(C_6H_5)_2]^+$, 14}, 281 { $[M-PO(C_5H_9)_2-H_2O]^+$, 42}, 215 { $[CH_2PO(C_6H_5)_2]^+$, 77}, 201 [PO(C₆H₅)₂, 100]. Anal. Calcd. for C₂₈H₃₈O₃P₂: C, 69.40; H, 7.91. Found: C, 69.38; H, 7.95. Data of **11b** from the spectra of the mixture: ¹H NMR 7.78–7.72 (complex signal, 4H, Ar-H_{ortho}), 7.51-7.41 (complex signal, 6H, Ar-H_{meta}, Ar-H_{para}), 5.31 (broad s, 1H, OH), 2.77 (dd, J=15.0 Hz, J=10.0 Hz, 1H) and 2.72 (dd, J=15.0 Hz, J=10.0 Hz, 1H) (CH₂-P), 2.30–2.21 (m, 1H, 3-H), 2.20–1.90 (complex signal, 5H, 2 cyclopentyl CH, 2-H_{α}, 2-H_{β}, 4-H_{α}), 1.89–1.50 (complex signal, 19H, cyclopentyl CH₂, 4-H₆, 5-H_a, 5-H_b); ¹³C NMR 133.7 (C, d, ¹ J_{CP} =99.2 Hz, Ar-C_{ipso}), 131.6 (CH, broad s, Ar-CH_{para}), 130.4 (CH, d, ²J_{CP}=9.7 Hz, Ar-CH_{ortho}), 128.52 (CH, d, ${}^{3}J_{CP}=12.2$ Hz) and 128.45 (CH, d, ${}^{3}J_{CP}=11.7$ Hz) (Ar-CH_{meta}), 79.3 (CH, t, ${}^{2}J_{CP}={}^{3}J_{CP}=4.8$ Hz, C1), 41.6 (CH₂, t, ${}^{3}J_{CP}={}^{3}J_{CP}=6.9$ Hz, C5), 40.6 (CH₂, d, ${}^{3}J_{CP}=5.0$ Hz, C2), 38.7 (CH₂, d, ¹J_{CP}=69.9 Hz, CH₂-P), 36.4 (CH, d, ¹J_{CP}=66.3 Hz) and 36.2 (CH, d, ¹J_{CP}=66.3 Hz) (cyclopentyl CH), 34.8 (CH, d, ¹J_{CP}=64.3 Hz, C3), 27.1–27.0 (CH₂, cyclopentyl C2 and C5), 26.1–25.8 (CH₂, cyclopentyl C3 and C4), 24.6 (CH₂, d, ${}^{2}J_{CP}=2.0$ Hz, C4); ${}^{31}P$ NMR 54.8 [PO(C₅H₉)₂], 28.5 $[PO(C_6H_5)_2]$. Data of the stereoisomer of **11b** from the spectrum of the mixture: ³¹P NMR 52.0 $[PO(C_5H_9)_2], 31.2 [PO(C_6H_5)_2].$

cis-1-(Diphenylphosphinoyl)-3-[(diphenylphosphinoyl)methyl]cyclopentane (6a). a) Dehydration of **11a** to the mixture of alkenes **12a**. To a solution of **11a** (1.46 g, 2.92 mmol) in THF (60 mL), concentrated H_2SO_4 (0.32 mL, 5.84 mmol) was added and the mixture was stirred under reflux for 3 days. The mixture was allowed to cool to room temperature and the solvent was evaporated *in vacuo*. The residue was dissolved in CH₂Cl₂ (30 mL), washed with NaHCO₃ (saturated aqueous solution, 3×20 mL), dried (Na₂SO₄), filtered and concentrated to dryness *in vacuo* to give the mixture of alkenes **12a** as a brown foamy solid (1.31 g, 93% yield).

b) Hydrogenation of the mixture of alkenes **12a**. To a solution of the mixture of alkenes **12a** (557 mg, 1.16 mmol) in methanol (25 mL), Pd-C (5% Pd, 54% water content, 223 mg) was added and the mixture was vigorously stirred under hydrogen (1 atm) for 3 days. The suspension was filtered and the filtrate was concentrated to dryness *in vacuo* to give **6a** (464 mg, 83% yield) as a pale yellow foamy solid, whose ¹H and ¹³C NMR spectra coincide with those of a sample of **6a**, previously obtained by a different synthetic procedure.²

cis-1-(Dicyclopentylphosphinoyl)-3-[(diphenylphosphinoyl)methyl]cyclopentane (6b). a) Dehydration of **11b** to the mixture of alkenes **12b**. From a mixture of **11b** and its stereoisomer (6.57 g, 13.6 mmol) and concentrated H_2SO_4 (1.48 mL, 27.2 mmol) in THF (150 mL), following the procedure described for **11a**, but stirring under reflux for 6 days, a mixture of alkenes **12b** was obtained as a brown oil (5.43 g, 86% yield).

b) Hydrogenation of the mixture of alkenes 12b. To a solution of the mixture of alkenes 12b (1.33 g, 2.85 mmol) in methanol (65 mL) Pd-C (5% Pd, 54% water content, 0.55 g) was added and the mixture was vigorously stirred under a hydrogen atmosphere for 6 days. The suspension was filtered and the filtrate was concentrated to dryness in vacuo to give 6b (1.19 g, 89% yield) as a pale yellow foamy solid. An analytical sample of **6b** was obtained by crystallization (ethyl acetate), as a very hygroscopic white solid, whose m.p. could not be determined. IR (KBr) 1159, 1119 (P=O st) cm⁻¹. ¹H NMR 7,77-7,69 (complex signal, 4H, Ar-H_{ortho}), 7.50-7.41 (complex signal, 6H, Ar-H_{meta}, Ar-H_{para}), 2.48–2.28 [complex signal, 3H, 3-H, CH₂P], 2.14–1.93 (complex signal, 4H, cyclopentyl CH, 1-H, 5-H_a), 1.93–1.45 (complex signal, 19H, 8 cyclopentyl CH₂, 2- H_{β} , 4- H_{β} , 5- H_{β}), 1.45–1.30 (complex signal, 2H, 2- H_{α} , 4- H_{α}); ¹³C NMR 133.4 (C, d, ¹ J_{CP} =97.7 Hz) and 133.2 (C, d, ¹J_{CP}=97.7 Hz) (Ar-C_{ipso}), 131.5 (CH, d, ⁴J_{CP}=3.0 Hz) and 131.4 (CH, d, ${}^{4}J_{CP}=2.6$ Hz) (Ar-CH_{para}), 130.6 (CH, d, ${}^{2}J_{CP}=9.1$ Hz) and 130.4 (CH, d, ${}^{2}J_{CP}=9.1$ Hz) (Ar-CH_{ortho}), 128.5 (CH, d, ³J_{CP}=11.2 Hz, 2 Ar-CH_{meta}), 36.9 (CH, d, ¹J_{CP}=66.3 Hz) and 36.5 (CH, d, ¹J_{CP}=65.3 Hz) (cyclopentyl CH), 35.8 (CH, d, ¹J_{CP}=64.8 Hz, C1), 35.7 (CH₂, d, ³J_{CP}=7.1 Hz, C2), 34.7 (CH, dd, ³J_{CP}=11.3 Hz, ²J_{CP}=3.8 Hz, C3), 34.6 (CH₂, d, ¹J_{CP}=71.3 Hz, CH₂P), 33.6 (CH₂, dd, ³J_{CP}=9.1 Hz, ³J_{CP}=6.6 Hz, C4), 27.1 (2 CH₂, broad s) and 26.9 (CH₂, broad s) (cyclopentyl C2 and C5), 26.8 (CH₂, broad s), 26.1 (2 CH₂, d, ³J_{CP}=6.0 Hz) and 25.9 (2 CH₂, d, ³J_{CP}=6⁰ Hz) (cyclopentyl C3 and C4), 24.8 (CH₂, broad s, C5); ³¹P NMR 28.3 [PO(C₆H₅)₂], 55.7 $[PO(C_5H_9)_2]$. MS (EI), m/e (%): 469 $[(M+H)^+, 2]$, 468 $(M^{+}, 1)$, 400 $[(M-C_5H_8)^{+}, 13]$, 331 $[(M-C_5H_9-C_5H_8)^+, 55], 283 \{[M-PO(C_5H_9)_2]^+, 100\}, 267 \{[M-PO(C_6H_5)_2]^+, 15\}, 253$ { $[M-CH_2PO(C_6H_5)_2]^+$, 16}, 215 { $[CH_2PO(C_6H_5)_2]^+$, 17}, 201 { $[PO(C_6H_5)_2]^+$, 63}. Anal. Calcd. for C₂₈H₃₈O₂P₂·1.5H₂O: C, 67.86; H, 8.34. Found: C, 67.74; H, 8.19.

cis-1-(Diphenylphosphino)-3-[(diphenylphosphino)methyl]cyclopentane (13a). To a solution of **6a** (100 mg, 0.21 mmol) in degassed CH₃CN (5 mL), Et₃N (0.117 mL, 0.84 mmol) was added. The mixture was stirred at 0°C for 5 min, HSiCl₃ (0.07 mL, 0.69 mmol) was added and the mixture was heated under reflux for 3 h. The mixture was allowed to cool to room temperature, degassed benzene (5 mL) and degassed aqueous solution of NaOH (30%, 2.2 mL) were added and the mixture was stirred at 60°C for 30 min. The mixture was allowed to cool to room temperature, the organic layer was separated, washed with degassed H₂O (3 mL), degassed saturated aqueous solution of NaHCO₃ (3 mL) and degassed brine (3 mL). The organic phase was dried (Na₂SO₄), filtered and concentrated under reduced pressure, to give 13a as a colorless oil (90 mg, 95% yield), which was kept under argon. ¹H NMR 7,37–7,29 (complex signal, 8H, Ar-Hortho) 7.25-7.20 (complex signal, 12H, Ar-Hmeta, Ar-Hpara), 2.55-2.46 (m, 1H, 1-H), 2.10–2.01 (complex signal, 2H, CH₂P), 1.93–1.80 (complex signal, 3H, 2-H_{α}, 3-H, 4-H_{β} or 4- H_{α}), 1.78–1.67 (m, 1H) and 1.61–1.48 (m, 1H) (5- H_{α} , 5- H_{β}), 1.39–1.31 (m, 1H, 4- H_{α} or 4- H_{β}), 1.22-1.12 (m, 1H, 2-H_B); ¹³C NMR 139.0 (C, d, ¹J_{CP}=11.7 Hz), 138.8 (C, d, ¹J_{CP}=11.7 Hz) and 138.6 (2 C, d, ¹J_{CP}=13.2 Hz) (Ar-C_{inso}), 133.2 (CH, d, ²J_{CP}=18.2 Hz), 133.0 (CH, d, ²J_{CP}=18.2 Hz), 132.7 (CH, d, ²J_{CP}=18.7 Hz) and 132.5 (CH, d, ²J_{CP}=18.2 Hz) (Ar-CH_{ortho}), 128.4–128.1 (CH, complex signal, Ar-CH_{meta}, Ar-CH_{para}), 39.7 (CH₂, dd, ³J_{CP}=19.2 Hz, ²J_{CP}=8.6 Hz, C2), 38.4 (CH, dd, ³J_{CP}=13.2 Hz, ²J_{CP}=8.1 Hz, C3), 35.5 (CH, d, ¹J_{CP}=8.6 Hz, C1), 34.7 (CH₂, d, ¹*J*_{CP}=12.7 Hz, CH₂P), 34.1 (CH₂, dd, ³*J*_{CP}=8.6 Hz, ³*J*_{CP}=6.1 Hz, C4), 29.8 (CH₂, d, ²*J*_{CP}=19.8 Hz, C5); ${}^{31}PNMR - 4.2 [P(C_6H_5)_2], -20.6 [CH_2P(C_6H_5)_2].$

cis-1-(Dicyclopentylphosphino)-3-[(diphenylphosphino)methyl]cyclopentane (13b). From 6b (930 mg, 1.99 mmol), degassed CH₃CN (60 mL), Et₃N (2.5 mL, 17.9 mmol) and HSiCl₃ (1.62 mL, 16.1 mmol) and following the procedure described for **13a**, pure **13b** was obtained as a yellow oil (920 mg, quantitative yield). ¹H NMR 7.43–7.37 (complex signal, 4H, Ar-H_{ortho}), 7.32–7.27 (complex signal, 6H, Ar-H_{meta}, Ar-H_{para}), 2.17–2.04 (m, 2H, CH₂P), 2.03–1.96 (m, 1H, 2-H_a), 1.95–1.30 (complex signal, 24H, 8 cyclopentyl-CH₂, 2 cyclopentyl-CH, 1-H, 3-H, 4-H_a, 4-H_β, 5-H_α, 5-H_β), 1.18–1.09 (m, 1H, 2-H_β). ¹³C NMR 139.1 (C, d, ¹*J*_{CP}=12.1 Hz) and 138.9 (C, d, ¹*J*_{CP}=12.7 Hz) (Ar-C_{*ipso*}), 132.8 (CH, d, ²*J*_{CP}=20.3 Hz) and 132.5 (CH, d, ²*J*_{CP}=20.3 Hz) (Ar-CH_{ortho}), 128.4–128.2 (CH, complex signal, Ar-CH_{meta}, Ar-CH_{para}), 40.1 (CH₂, d, ²*J*_{CP}=11.8 Hz, ³*J*_{CP}=7.6 Hz, C2), 38.1 (CH, dd, ²*J*_{CP}=13.0 Hz, ³*J*_{CP}=7.4 Hz, C3), 35.4–35.0 (CH, complex signal, cyclopentyl CH, C1), 34.9 (CH₂, d, ¹*J*_{CP}=12.1 Hz, C4), 31.1–30.7 (CH₂, complex signal, cyclopentyl C2 and C5), 29.7 (CH₂, d, ²*J*_{CP}=15.2 Hz, C5), 26.2–25.8 (CH₂, complex signal, cyclopentyl C3 and C4); ³¹P NMR 4.1 [PO(C₅H₉)₂], –20.5 [CH₂PO(C₆H₅)₂].

Acknowledgements

Financial support from the Dirección General de Investigación of Ministerio de Ciencia y Tecnología (project QUI1999-0512) and Comissionat per a Universitats i Recerca of the

Generalitat de Catalunya (*GC*) (project 2001-SGR-00085) and a fellowship from the *GC* (to G. C.) are gratefully acknowledged. We thank the *Serveis Científico-Tècnics* of the University of Barcelona for NMR and MS facilities and Ms. P. Domènech from the IIQAB (CSIC, Barcelona, Spain) for carrying out the elemental analyses.

References

- 1. Camps, P.; Colet, G.; Font-Bardia, M.; Muñoz-Torrero, V.; Solans, X.; Vázquez, S. *Tetrahedron* **2002**, *58*, 3473.
- 2. Camps, P.; Colet, G.; Font-Bardia, M.; Muñoz-Torrero, V.; Solans, X.; Vázquez, S. *Tetrahedron: Asymmetry* **2002**, *13*, 759.
- (a) Conant, J. B.; Braverman, J. B. S.; Hussey, R. E. J. Am. Chem. Soc. 1923, 45, 165. (b) Miller, J. A.; Stewart, D. Tetrahedron Lett. 1977, 1065. (c) Bell, A.; Davidson, A. H.; Earnshaw, C.; Norrish, H. K.; Torr, R. S.; Trowbridge, D. B.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1983, 2879. (d) Mikolajczyk, M.; Zatorski, A. J. Org. Chem. 1991, 56, 1217.
- 4. Haynes, R. K.; Lam, W. W.-L.; Yeung, L.-L. Tetrahedron Lett. 1996, 37, 4729.
- (a) Horner, L.; Klink, W. Tetrahedron Lett. 1964, 2467. (b) O'Brien, P.; Warren, S. Tetrahedron Lett. 1995, 36, 2681. (c) Clayden, J.; Warren, S. Angew. Chem. Int. Ed. Engl. 1996, 35, 241. (d) Guéguen, C.; O'Brien, P.; Warren, S.; Wyatt, P. J. Organomet. Chem. 1997, 529, 279. (e) Guéguen, C.; O'Brien, P.; Powell, H. R.; Raithby, P. R.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. Chem. Soc., Perkin Trans. 1 1998, 3405. (f) Nelson, A.; Warren, S. J. (