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Abstract 
Predictive models, based solely on molecular structure, were developed for three environ-
mentally-related partitioning properties: Water solubility, soil/sediment partition coefficient, and 
octanol/water partition coefficient. Data for a diverse set of 136 chemicals were taken from the 
literature, and include aromatic and aliphatic compounds, as well as herbicides, pesticides, and 
polycyclic aromatic hydrocarbons. The hierarchical QSAR (HiQSAR) approach to model 
building was employed, in which increasingly more computer-resource intensive classes of 
structural descriptors are used only when the simpler and more easily calculable descriptors do 
not provide adequate models. The results indicate that the simple topostructural (TS) and 
topochemical (TC) descriptors provide the best models, and that, in many cases, these structure-
based models are superior to those based on properties. 
 
Keywords: Ridge regression, hierarchical QSAR, octanol/water partition coefficient, soil/ 
sediment partition coefficient, water solubility, environmental pollutants 

 
 
 
Introduction 
 
Modern lifestyle in the industrialized world is dependent upon the use of thousands of chemicals 
for various industrial processes as well as for special purposes as drugs, pesticides, herbicides, 
etc. In the United States, the Toxic Substances Control Act (TSCA) Inventory currently has over 
75,000 chemicals of which over 2,800 are high production volume chemicals (HPVs).1 These 
chemicals may be released to the environment during their production, transport, and intended 
uses. Pollutants can also be released into the environment from underground storage tanks, 
hazardous waste disposal sites, municipal landfills, and accidental spills. The Comprehensive 
Environmental Response, Compensation, and Liability Act (CERCLA) priority list contains 275 
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chemicals, many of which are found at facilities on the National Priority List (NPL).2 These 
chemicals pose a substantial threat to human, wildlife, and ecological health. 

Understanding the distribution of pollutants among different environmental phases is crucial 
to their hazard assessment and remediation of contaminated sites. Many contaminants end up in 
the soil and sediment. Remediation often involves extraction of the polluting chemicals into the 
aqueous phase and then treatment by physical, chemical or biological processes. The extraction 
methodology is critically dependent on the partitioning properties of the chemicals.3  

Physicochemical properties such as octanol/water partition coefficients (Kow) and aqueous 
solubility (S) have been used in the estimation of partitioning of chemicals among various 
environmental phases.3,4 Reversed-phase high performance liquid chromatography has also been 
used in the prediction of S and Kow. Whereas such property-property correlations designed to 
estimate properties of environmental interest from other known physicochemical properties work 
reasonably well, this approach is limited by the unavailability of the latter properties for the 
majority of chemicals of environmental concern.5 Various studies have shown that properties 
such as S6 and Kow

7,8 can be predicted using mathematical molecular descriptors, which can be 
calculated directly from chemical structures alone without the input of any other experimental 
data. Such molecular descriptors quantify aspects of structure, which contribute to interactions of 
chemicals with hydrophobic and hydrophilic phases. Topostructural, topochemical, geometrical 
(3D), and quantum chemical indices comprise a set of descriptors which have proved useful in 
the prediction of toxicity and toxicologically relevant properties of both congeneric and 
structurally diverse sets of molecules.9–11 Predictive models based on calculated descriptors can 
provide cost effective and rapid estimates of partitioning behavior of environmental pollutants. 
They can also provide insight into the environmental behavior of chemicals not yet synthesized 
or those that cannot be examined experimentally due to their extremely hazardous nature. 

Chu and Chan used Kow to predict S and soil/sediment partition coefficients (Koc) of a diverse 
collection of pollutants, viz., aliphatics, aromatics, pesticides, herbicides, and polycyclic 
aromatic hydrocarbons (PAHs).3 They also developed predictive models for Koc based on 
solubility. As stated earlier, such property-property correlation methods are of limited 
applicability. Therefore, we were interested to investigate whether properties of environmental 
interest can be estimated from molecular structural descriptors. We have formulated a 
hierarchical quantitative structure-activity relationship (HiQSAR) approach where calculated 
descriptors are used in a graduated manner such that computationally more resource intensive 
parameters are used only when easily calculable indices do not provide acceptable results. We 
have carried out a comparative study of physicochemical properties vis-à-vis theoretically based 
HiQSAR approach in the estimation of partitioning of chemicals of environmental concern. 
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Methods and Materials 
 
Experimental data 
Chu and Chan3 collected data for water solubility (S), octanol/water partition coefficient (Kow), 
and soil/sediment partition coefficient (Koc) from several sources including an EPA report on 
ground water remediation and the Handbook of Environmental Data on Organic Chemicals.12,13 
While Chu and Chan selected 148 compounds, we omitted 12 from their collection, resulting in a 
total number of 136 chemicals in our data set. The omitted compounds include: a) isomers that 
are indistinguishable with respect to our software (1,2-Dichloroethene, Hexachlorocyclohexane), 
b) compounds with fewer than three non-hydrogen atoms, for which our complete set of 
descriptors cannot be calculated (chloromethane, iodomethane), c) mixtures (chlorotoluene, 
cresol, xylene), and d) those compounds that contain atoms not represented in our software 
(cacodylic acid). Based on Chu and Chan’s classification scheme, the 136 chemicals were 
partitioned into five categories: aliphatics (26), aromatics (43), herbicides (18), polycyclic 
aromatic hydrocarbons (19), and pesticides (30). The data are provided in Table 1. 
 
Table 1. Solubility (S), soil/sediment partition coefficient (Koc), octanol/water partition 
coefficient (Kow) 

  S Koc Kow 
 Aliphatics    

1 1,1,1-Trichloroethane (Methyl chloroform) 1.12 exp-02 1.52 exp+02 3.16 exp+02 
2 1,1,1,2-Tetrachloroethane 1.73 exp-02 1.18 exp+02 2.45 exp+02 
3 1,1,2-Trichloroethane 3.37 exp-02 5.60 exp+01 2.95 exp+02 
4 1,1-Dichloroethane 5.56 exp-02 3.00 exp+01 6.17 exp+01 
5 1,1-Dichloroethene 2.32 exp-02 6.50 exp+01 6.92 exp+01 
6 1,2-Dichloroethane 8.61 exp-02 1.40 exp+01 3.02 exp+01 
7 1,3-butadiene  1.36 exp-02 1.20 exp+02 9.77 exp+01 
8 Acetonitrile [methyl cyanide] Infinity 2.20 exp+00 4.57 exp-01 
9 Acrylonitrile [2-propenenitrile] 1.50 exp+00 8.50 exp-01 1.78 exp+00 

10 Bromodichloromethane 2.69 exp-02 6.10 exp+01 7.59 exp+01 
11 Chloroethane 8.90 exp-02 1.70 exp+01 3.50 exp+01 
12 Chloroethene 4.27 exp-02 5.70 exp+01 2.40 exp+01 
13 Dibromochloromethane 1.92 exp-02 8.40 exp+01 1.23 exp+02 
14 Dichlorodifluorormethane [Freon12] 2.32 exp-03 5.80 exp+01 1.45 exp+02 
15 Dichloromethane 2.35 exp-01 8.80 exp+00 2.00 exp+01 
16 Ethylene dibromide 2.29 exp-02 4.40 exp+01 5.75 exp+01 
17 Hexachlorobutadiene 5.74 exp-07 2.90 exp+04 6.02 exp+04 
18 Hexachloropentadiene 7.69 exp-06 4.80 exp+03 1.10 exp+05 
19 Hexachloroethane (perchloroethane) 2.11 exp-04 2.00 exp+04 3.98 exp+04 
20 Pentachloroethane 1.83 exp-04 1.90 exp+03 7.76 exp+02 
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21 Tetrachloroethene 8.97 exp-04 3.64 exp+02 3.98 exp+02 
22 Tetrachloromethane [Carbon tetrachloride] 4.92 exp-03 4.39 exp+02 4.37 exp+02 
23 Tribromomethane [Bromoform] 1.19 exp-02 1.16 exp+02 2.51 exp+02 
24 Trichloroethene 8.29 exp-03 1.26 exp+02 2.40 exp+02 
25 Trichlorofluoromethane [Freon 11] 8.01 exp-03 1.59 exp+02 3.39 exp+02 
26 Trichloromethane [Chloroform] 6.87 exp-02    4.70 exp+01  9.33 exp+01 

 Aromatics    
27 1,2,3,4-Tetrachlorobenzene 1.62 exp-05 1.80 exp+04 2.88 exp+04 
28 1,2,3,5-Tetrachlorobenzene 1.11 exp-05 1.78 exp+04 2.88 exp+04 
29 1,2,3-Trichlorobenzene 6.61 exp-05 7.40 exp+03 1.29 exp+04 
30 1,2,4,5-Tetrachlorobenzene 2.78 exp-05 1.60 exp+03 4.68 exp+04 
31 1,2,4-Trichlorobenzene 1.65 exp-04 9.20 exp+03 2.00 exp+04 
32 1,2-Dichlorobenzene [o-dichlorobenzene] 6.80 exp-04 1.70 exp+03 3.98 exp+03 
33 1,3,5-Trichlorobenzene 3.20 exp-05 6.20 exp+03 1.41 exp+04 
34 1,3-Dichlorobenzene [m-dichlorobenzene] 8.37 exp-04 1.70 exp+03 3.98 exp+03 
35 1,3-Dinitrobenzene 2.80 exp-03 1.50 exp+02 4.17 exp+01 
36 1,4-Dichlorobenzene [p-dichlorobenzene] 5.37 exp-04 1.70 exp+03 3.98 exp+03 
37 2,3,4,6-Tetrachlorophenol 3.02 exp-05 9.80 exp+01 1.26 exp+04 
38 2,3-Dinitrotoluene 1.70 exp-02 5.30 exp+01 1.95 exp+02 
39 2,4,5-Trichlorophenol 6.03 exp-03 8.90 exp+01 5.25 exp+03 
40 2,4,6-Trichlorophenol 4.05 exp-03 2.00 exp+03 7.41 exp+03 
41 2,4-Dichlorophenol 2.82 exp-02 3.80 exp+02 7.94 exp+02 
42 2,4-Dimethylphenol [as-m-xylenol] 3.44 exp-02 2.22 exp+02 2.63 exp+02 
43 2,4-Dinitrophenol 3.04 exp-02 1.66 exp+01 3.16 exp+01 
44 2,4-Dinitrotoluene 1.32 exp-03 4.50 exp+01 1.00 exp+02 
45 2,5-Dinitrotoluene 7.25 exp-03 8.40 exp+01 1.90 exp+02 
46 2,6-Dinitrotoluene 7.25 exp-03 9.20 exp+01 1.00 exp+02 
47 2-Chlorophenol [o-chlorophenol] 2.26 exp-01 4.00 exp+02 1.45 exp+02 
48 3,4-Dinitrotoluene 5.93 exp-03 9.40 exp+01 1.95 exp+02 
49 4,6-Dinitro-o-cresol 1.46 exp-03 2.40 exp+02 5.01 exp+02 
50 4-Chloro-m-cresol [chlorocresol] 2.70 exp-02 4.90 exp+02 9.80 exp+02 
51 Benzene 2.24 exp-02 8.30 exp+01 1.32 exp+02 
52 Bromobenzene [phenyl bromide] 2.84 exp-03 1.50 exp+02 9.00 exp+02 
53 Chlorobenzene 4.14 exp-03 3.30 exp+02 6.92 exp+02 
54 Diethylstilbestrol [DES] 3.58 exp-08 2.80 exp+01 2.88 exp+05 
55 Ethylbenzene [phenylethane] 2.42 exp-04 1.10 exp+03 1.41 exp+03 
56 Hexachlorobenzene [perchlorobenzene] 2.11 exp-08 3.90 exp+03 1.70 exp+05 
57 Hexachlorophene [dermadex] 9.83 exp-09 9.10 exp+04 3.47 exp+07 
58 m-Chlorotoluene 3.79 exp-04 1.20 exp+03 1.90 exp+03 
59 m-Xylene [1,3-dimethylbenzene] 1.22 exp-03 9.82 exp+02 1.82 exp+03 
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60 Nitrobenzene 1.54 exp-02 3.60 exp+01 7.08 exp+01 
61 o-Chlorotoluene 5.69 exp-04 1.60 exp+03 2.60 exp+03 
62 o-Xylene [1,2-dimethylbenzene] 1.65 exp-03 8.30 exp+02 8.91 exp+02 
63 p-Chlorotoluene 3.48 exp-04 1.20 exp+03 2.00 exp+03 
64 Pentachlorobenzene 5.39 exp-07 1.30 exp+04 1.55 exp+05 
65 Pentachloronitrobenzene [quintozene] 2.41 exp-07 1.90 exp+04 2.82 exp+05 
66 Pentachlorophenol 5.26 exp-05 5.30 exp+04 1.00 exp+05 
67 Phenol 9.88 exp-01 1.42 exp+01 2.88 exp+01 
68 p-Xylene [1,4-dimethylbenzene] 1.86 exp-03 8.70 exp+02 1.41 exp+03 
69 Toluene [methylbenzene] 5.81 exp-03 3.00 exp+02 5.37 exp+02 

 Herbicides    
70 2,4,5-Trichlorophenoxyacetic acid 9.32 exp-04 8.01 exp+01 4.00 exp+00 
71 2,4-Dichlorophenoxyacetic acid [2,4-D] 2.80 exp-03 1.96 exp+01 6.46 exp+02 
72 Alachlor 2.72 exp-03 1.90 exp+02 4.34 exp+02 
73 Amitrole [aminotriazole] 3.33 exp+00 4.40 exp+00 8.32 exp-03 
74 Atrazine 1.53 exp-04 1.63 exp+02 2.12 exp+02 
75 Chloramben 3.40 exp-03 2.10 exp+01 1.30 exp+01 
76 Diallate 5.18 exp-05 1.90 exp+03 5.37 exp+00 
77 Dichlobenil [2,6-dichlorobenzonitrile] 1.05 exp-04 2.24 exp+02 7.87 exp+02 
78 Diuron 1.80 exp-04 3.82 exp+02 6.50 exp+02 
79 Fenuron 2.34 exp-02 4.22 exp+01 1.00 exp+01 
80 Fluometuron 3.88 exp-04 1.75 exp+02 2.20 exp+01 
81 Linuron 3.01 exp-04 8.63 exp+02 1.54 exp+02 
82 Monuron 1.16 exp-03 1.83 exp+02 1.33 exp+02 
83 Paraquat 2.45 exp+00 1.55 exp+04 1.00 exp+00 
84 Picloram 1.78 exp-03 2.55 exp+01 2.00 exp+00 
85 Propazine 3.74 exp-05 1.53 exp+02 7.85 exp+02 
86 Simazine 1.74 exp-05 1.38 exp+02 8.80 exp+01 
87 Trifluralin 1.79 exp-06 1.37 exp+04 2.20 exp+05 

 Polycyclic aromatic hydrocarbons    
88 1,2:7,8-Dibenzopyrene [Dibenzo[a,i]pyrene] 3.34 exp-07 1.20 exp+03 4.17 exp+06 
89 1-Naphthylamine 1.64 exp-02 6.10 exp+01 1.17 exp+02 
90 2-Methylnaphthalene 1.79 exp-04 8.50 exp+03 1.30 exp+04 
91 2-Napthylamine 4.09 exp-03 1.30 exp+02 1.17 exp+02 
92 Acenaphthylene 2.58 exp-05 2.50 exp+03 5.01 exp+03 
93 Acenapthene 2.22 exp-05 4.60 exp+03 1.00 exp+04 
94 Anthracene 2.52 exp-07 1.40 exp+04 2.82 exp+04 
95 Benzo[a]anthracene 2.50 exp-08 1.38 exp+06 3.98 exp+05 
96 Benzo[alpyrene 4.76 exp-09 5.50 exp+06 1.15 exp+06 
97 Benzo[b]fluoranthene 5.03 exp-08 5.50 exp+05 1.15 exp+06 
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98 Benzo[ghi]perylene 2.54 exp-09 1.60 exp+06 3.24 exp+06 
99 Benzo[k]fluoranthene 1.54 exp-08 5.50 exp+05 1.15 exp+06 

100 Chrysene 7.89 exp-09 2.00 exp+05 4.07 exp+05 
101 Dibenz[a,h]anthracene 1.80 exp-09 3.30 exp+06 6.31 exp+06 
102 Fluoranthene 1.02 exp-06 3.80 exp+04 7.94 exp+04 
103 Indeno[1,2,3-cd]pyrene 1.92 exp-09 1.60 exp+06 3.16 exp+06 
104 Napthalene [napthene] 2.47 exp-04 1.30 exp+03 2.76 exp+03 
105 Phenanthrene 5.61 exp-06 1.40 exp+04 2.88 exp+04 
106 Pyrene 6.53 exp-07 3.80 exp+04 7.59 exp+04 

 Pesticides    
107 1,2-Dibromo-3-chloropropane [DBCP] 4.23 exp-03 9.80 exp+01 1.95 exp+02 
108 1,2-Dichloropropane 2.39 exp-02 5.10 exp+01 1.00 exp+02 
109 1,3-Dichloropropene [telone] 2.52 exp-02 4.80 exp+01 1.00 exp+02 
110 2,3,7,8-Tetrachlorodibenzo-p-dioxin 6.21 exp-10 3.30 exp+06 5.25 exp+06 
111 Aldrin 4.93 exp-07 9.60 exp+04 2.00 exp+05 
112 Captan 1.66 exp-06 6.40 exp+03 2.24 exp+02 
113 Carbaryl [sevin] 1.99 exp-04 2.30 exp+02 2.29 exp+02 
114 Carbofuran 1.88 exp-03 2.94 exp+01 2.07 exp+02 
115 Chlordane 1.37 exp-06 1.40 exp+05 2.09 exp+03 
116 Chlorobenzilate 6.73 exp-05 8.00 exp+02 3.24 exp+04 
117 Chlorpyrifos [dursban] 8.56 exp-07 1.36 exp+04 6.60 exp+04 
118 Cyclophosphamide 5.02 exp+03 4.20 exp-02 6.03 exp-04 
119 DDD 3.12 exp-07 7.70 exp+05 1.58 exp+06 
120 DDE 1.13 exp-07 4.40 exp+06 1.00 exp+07 
121 DDT 1.96 exp-08 2.43 exp+05 1.55 exp+06 
122 Diazinon 1.31 exp-04 8.50 exp+01 1.05 exp+03 
123 Dieldrin 5.12 exp-07 1.70 exp+03 3.16 exp+03 
124 Dinoseb 2.08 exp-04 1.24 exp+02 1.98 exp+02 
125 Ethylene oxide 2.27 exp+01 2.20 exp+00 6.03 exp-01 
126 Kepone 2.02 exp-08 5.50 exp+04 1.00 exp+02 
127 Leptophos 5.82 exp-06 9.30 exp+03 2.02 exp+06 
128 Malathion 4.39 exp-04 1.80 exp+03 7.76 exp+02 
129 Methoxychlor 8.68 exp-09 8.00 exp+04 4.75 exp+04 
130 Methyl parathion 2.28 exp-04 5.10 exp+03 8.13 exp+01 
131 Mirex [dechlorane] 1.10 exp-06 2.40 exp+07 7.80 exp+06 
132 N,N-diphenylamine 3.40 exp-04 4.70 exp+02 3.98 exp+03 
133 Parathion 8.24 exp-05 1.07 exp+04 6.45 exp+03 
134 p-Chloroaniline [4-chlorobenzenamine] 4.15 exp-02 5.61 exp+02 6.76 exp+01 
135 Toxaphene 1.21 exp-06 9.64 exp+02 2.00 exp+03 
136 Trichlorfon [chlorofos] 5.98 exp-01 6.10 exp+00 1.95 exp+02 
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Structural descriptors 
Several software programs, including POLLY v. 2.3,14 Triplet,15,16 and Molconn-Z v. 3.5,17 were 
used to calculate a set of descriptors based solely on molecular structure. The descriptors 
numerically represent various aspects of the chemical structure and can be classified into one of 
three categories based on level of complexity: Topostructural (TS), Topochemical (TC), and 3-
dimensional/geometrical (3D). The TS are the simplest in that no chemical information is 
encoded, with molecular structure viewed only in terms of atom connectivity. The TC 
descriptors, in addition to encoding information about how the atoms are connected within the 
molecule, also take chemical information into account, including atom type and bond type. The 
most complex of the three descriptor classes is the 3D, which encodes information on the 3-
dimensional aspects of molecular structure. TS, TC, and 3D descriptors were used in a 
hierarchical manner in order to identify any model improvement upon addition of increasingly 
complex descriptor classes. For comparative purposes, single-class models were also developed. 

Table 2 contains a complete list of the calculated TS, TC, and 3D descriptors. From this set, 
the following descriptors were removed and not used in the subsequent analyses: 1) Any 
descriptor with a constant value for all, or most all, of the136 chemicals in the data set, 2) one 
descriptor of each perfectly correlated pair (i.e., r = 1.0), as determined by the CORR procedure 
of the SAS statistical package,18 and any descriptors with undefined values. A total of 260 
descriptors were available for modeling. 
 
Table 2. Symbols, definitions and classification of calculated molecular descriptors 

 Topostructural (TS) 
IW

D Information index for the magnitudes of distances between all possible pairs of vertices 
of a graph 

IW
D Mean information index for the magnitude of distance 

W Wiener index = half-sum of the off-diagonal elements of the distance matrix of a graph 
ID Degree complexity 
HV Graph vertex complexity 
HD Graph distance complexity 
IC Information content of the distance matrix partitioned by frequency of occurrences of 

distance h 
M1 A Zagreb group parameter = sum of square of degree over all vertices 
M2 A Zagreb group parameter = sum of cross-product of degrees over all neighboring 

(connected) vertices 
hχ Path connectivity index of order h = 0–10 
hχC Cluster connectivity index of order h = 3–6 
hχPC Path-cluster connectivity index of order h = 4–6 
hχCh Chain connectivity index of order h = 3–10 
Ph Number of paths of length h = 0–10 
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J Balaban’s J index based on topological distance  
nrings Number of rings in a graph 
ncirc Number of circuits in a graph 
DN2Sy Triplet index from distance matrix, square of graph order (# of non-H atoms), and 

distance sum; operation y = 1–5 
DN21y Triplet index from distance matrix, square of graph order, and number 1; operation y = 

1–5 
AS1y Triplet index from adjacency matrix, distance sum, and number 1; operation y = 1–5 
DS1y Triplet index from distance matrix, distance sum, and number 1; operation y = 1–5 
ASNy Triplet index from adjacency matrix, distance sum, and graph order; operation y = 1–5 
DSNy Triplet index from distance matrix, distance sum, and graph order; operation y = 1–5 
DN2Ny Triplet index from distance matrix, square of graph order, and graph order; operation y = 

1–5 
ANSy Triplet index from adjacency matrix, graph order, and distance sum; operation y = 1–5 
AN1y Triplet index from adjacency matrix, graph order, and number 1; operation y = 1–5 
ANNy Triplet index from adjacency matrix, graph order, and graph order again; operation y = 1–5 
ASVy Triplet index from adjacency matrix, distance sum, and vertex degree; operation y = 1–5 
DSVy Triplet index from distance matrix, distance sum, and vertex degree; operation y = 1–5 
ANVy Triplet index from adjacency matrix, graph order, and vertex degree; operation y = 1–5 

Topochemical (TC) 
O Order of neighborhood when ICr reaches its maximum value for the hydrogen-filled 

graph 
Oorb Order of neighborhood when ICr reaches its maximum value for the hydrogen-

suppressed graph 
Iorb Information content or complexity of the hydrogen-suppressed graph at its maximum 

neighborhood of vertices 
ICr Mean information content or complexity of a graph based on the rth (r = 0–6) order 

neighborhood of vertices in a hydrogen-filled graph 
SICr Structural information content for rth (r = 0–6) order neighborhood of vertices in a 

hydrogen-filled graph 
CICr Complementary information content for rth (r = 0–6) order neighborhood of vertices in a 

hydrogen-filled graph 
hχb Bond path connectivity index of order h = 0–6 
hχb

C Bond cluster connectivity index of order h = 3–6 
hχb

Ch Bond chain connectivity index of order h = 3–6 
hχb

PC Bond path-cluster connectivity index of order h = 4–6 
hχv Valence path connectivity index of order h = 0–10 
hχv

C Valence cluster connectivity index of order h = 3–6 
hχv

Ch Valence chain connectivity index of order h = 3–10 
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hχv

PC Valence path-cluster connectivity index of order h = 4–6 
JB Balaban’s J index based on bond types 
JX Balaban’s J index based on relative electronegativities 
JY Balaban’s J index based on relative covalent radii 
AZVy Triplet index from adjacency matrix, atomic number, and vertex degree; operation y = 1–5 
AZSy Triplet index from adjacency matrix, atomic number, and distance sum; operation y = 1–5 
ASZy Triplet index from adjacency matrix, distance sum, and atomic number; operation y = 1–5 
AZNy Triplet index from adjacency matrix, atomic number, and graph order; operation y = 1–5 
ANZy Triplet index from adjacency matrix, graph order, and atomic number; operation y = 1–5 
DSZy Triplet index from distance matrix, distance sum, and atomic number;  

operation y = 1–5 
DN2Zy Triplet index from distance matrix, square of graph order, and atomic number; operation 

y = 1–5 
nvx Number of non-hydrogen atoms in a molecule 
nelem Number of elements in a molecule  
fw Molecular weight  
si Shannon information index 
totop Total Topological Index t 
sumI Sum of the intrinsic state values I 
sumdelI Sum of delta-I values  
tets2 Total topological state index based on electrotopological state indices 
phia Flexibility index (kp1* kp2/nvx)  
IdCbar Bonchev-Trinajstić information index 
IdC Bonchev-Trinajstić information index 
Wp Wienerp 
Pf Plattf 
Wt Total Wiener number 
knotp Difference of chi-cluster-3 and path/cluster-4 
knotpv Valence difference of chi-cluster-3 and path/cluster-4 
nclass Number of classes of topologically (symmetry) equivalent graph vertices 
numHBd Number of hydrogen bond donors 
numwHBd Number of weak hydrogen bond donors 
numHBa Number of hydrogen bond acceptors  
SHCsats E-State of C sp3 bonded to other saturated C atoms 
SHCsatu E-State of C sp3 bonded to unsaturated C atoms 
SHvin E-State of C atoms in the vinyl group, =CH– 
SHtvin E-State of C atoms in the terminal vinyl group, =CH2 
SHavin E-State of C atoms in the vinyl group, =CH–, bonded to an aromatic C 
SHarom E-State of C sp2 which are part of an aromatic system 
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SHHBd Hydrogen bond donor index, sum of Hydrogen E-State values for –OH, =NH,–NH2, –
NH–, –SH, and #CH 

SHwHBd Weak hydrogen bond donor index, sum of C–H Hydrogen E-State values for hydrogen 
atoms on a C to which a F and/or Cl are also bonded 

SHHBa Hydrogen bond acceptor index, sum of the E-State values for –OH, =NH,–NH2, –NH–, 
>N–, –O–, –S–, along with –F and –Cl 

Qv General Polarity descriptor  
NHBinty Count of potential internal hydrogen bonders (y = 2–10) 
SHBinty E-State descriptors of potential internal hydrogen bond strength (y =2–10) 
 Electrotopological State index values for atoms types: SHsOH, SHdNH, SHsSH, 

SHsNH2, SHssNH, SHtCH, SHother, SHCHnX, Hmax Gmax, Hmin, Gmin, Hmaxpos, 
Hminneg, SsLi, SssBe, Sssss,Bem, SssBH, SsssB, SssssBm, SsCH3, SdCH2, SssCH2, 
StCH, SdsCH, SaaCH, SsssCH, SddC,StsC, SdssC, SaasC, SaaaC, SssssC, SsNH3p, 
SsNH2, SssNH2p, SdNH, SssNH, SaaNH, StN, SsssNHp, SdsN, SaaN, SsssN, SddsN, 
SaasN, SssssNp, SsOH, SdO, SssO, SaaO, SsF, SsSiH3, SssSiH2, SsssSiH, SssssSi, 
SsPH2, SssPH, SsssP, SdsssP, SsssssP, SsSH, SdS, SssS, SaaS, SdssS, SddssS, SssssssS, 
SsCl, SsGeH3, SssGeH2, SsssGeH, SssssGe, SsAsH2, SssAsH, SsssAs, SdsssAs, 
SsssssAs, SsSeH, SdSe, SssSe, SaaSe, SdssSe, SddssSe, SsBr, SsSnH3, SssSnH2, 
SsssSnH, SssssSn, SsI, SsPbH3, SssPbH2, SsssPbH, SssssPb 

 Geometrical / Shape (3D) 
kp0 Kappa zero 
kp1–kp3 Kappa simple indices 
ka1–ka3 Kappa alpha indices 

 
Statistical methodology 
Each of the descriptors was transformed by the natural logarithm prior to model development, as 
their scales differed by several orders of magnitude. In order to avoid possible arithmetic error, a 
constant was added to the descriptor before log transforming. For descriptors with minimum 
values less than –1, the constant added was the smallest natural number that would provide a 
positive sum. For descriptors with minimum values greater than –1, the constant ‘1’ was used. 
The dependent variables, i.e., S, Koc, and Kow, were also scaled by the natural logarithm. (The log 
scaled descriptors are available as supplemental material.) 

For comparative purposes, results are reported based on two regression methodologies for the 
development of predictive models for each endpoint, namely ridge regression (RR)19 and partial 
least squares (PLS).20 Both methodologies make use of all available descriptors, as opposed to 
subset regression, and are useful when the number of descriptors exceeds the number of 
compounds in the data set (i.e., rank deficient data) and when the descriptors are highly 
intercorrelated. Formal comparisons have consistently shown that using a subset of available 
descriptors is less effective than using alternative regression methods that retain all available 
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descriptors, such as RR and PLS, and deal with rank deficiency in another way.21,22 With ridge 
regression, the descriptors are first transformed to their principal components (PCs). All PCs are 
retained but are “shrunk” differentially according to their eignevalues.19 For each model 
developed, the cross-validated R2 was obtained using the leave-one-out approach and can be 
calculated as follows (eq. 1):  

2 1cv
PRESSR
SSTotal

= −   (1) 

where PRESS is the prediction sum of squares and SSTotal is the total sum of squares.  
It should be strongly stated that ordinary least squares (OLS) regression is inappropriate for 

use with rank deficient data, and that the conventional R2 metric is without value in this situation. 
Unlike R2, which tends to increase upon the addition of any descriptor, the cross-validated R2 
tends to decrease upon the addition of irrelevant descriptors and is a reliable measure of model 
predictability.23  

RR and PLS models based on structural descriptors were developed for each of the five 
chemical subsets as well as for the combined set of 136 compounds. For comparative purposes, 
we also developed property-based models for the prediction of: a) S, based on Kow, b) Koc, based 
on Kow, and c) Koc, based on S. The SAS statistical package18 was used to develop these ordinary 
least squares models, a methodology appropriate for the number of independent variables with 
respect to the number of observations. 
 
 
Results and Discussion 
 
The major objective of the study reported in this paper is to compare the relative effectiveness of 
physicochemical vis-à-vis calculated structural descriptors in the estimation of partitioning 
properties of chemicals of environmental concern.  

For the sake of brevity, the many highly-parameterized models are not reported. However, 
Tables 3–7 provide the associated cross-validated R2 values for the five chemical subsets, while 
the cross-validated R2 values for the combined data are found in Table 8. In all cases, there is no 
significant improvement in model quality when the more complex 3D descriptors are added to 
the topological (i.e., TS and TC) descriptors.  

When examining the regression results, it’s important to keep in mind that while R2 is 
necessarily a nonnegative number, this is not true of the cross-validated R2, which can take on 
negative values if the model is extremely poor (see eq. 1).  

With respect to water solubility, there is improvement in model quality upon the addition of 
TC descriptors to the TS indices (especially pronounced with the aromatics, herbicides, and 
pesticides) except in the case of the aliphatic subset, for which the TS descriptors, alone, provide 
the best water solubility model. The best solubility model for the total set of 136 compounds is 
the TS+TC model, with a cross-validated R2 value of 0.739 (Table 8). High-quality models 
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obtained for the various subsets include the TC model for the aromatics with a cross-validated R2 
value of 0.905 (Table 4), and the TS+TC model for the polyaromatic hydrocarbons with a cross-
validated R2 value of 0.808 (Table 6).  
 
Table 3. Regression results for the aliphatic subset (N = 26) 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

Model Type RR PLS RR PLS RR PLS 
TS 0.704 0.569 0.658 0.622 0.748 0.697 
TS+TC 0.649 0.641 0.544 0.374 0.761 0.520 
TS+TC+3D 0.562 0.644 0.540 0.350 0.759 0.523 
TS 0.704 0.569 0.658 0.622 0.748 0.697 
TC 0.582 0.595 0.615 0.491 0.765 0.627 
3D 0.637 0.549 0.682 0.665 0.739 0.690 

 
Table 4. Regression results for the aromatic subset (N = 43) 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

Model Type RR PLS RR PLS RR PLS 
TS 0.459 0.314 –0.019 –0.025 0.668 0.512 
TS+TC 0.901 0.880 –0.018 0.148 0.927 0.886 
TS+TC+3D 0.905 0.881 –0.037 0.138 0.929 0.891 
TS 0.459 0.314 –0.019 -0.025 0.668 0.512 
TC 0.905 0.884 0.069 0.177 0.923 0.870 
3D 0.692 0.637 0.408 0.279 0.756 0.893 

 

Table 5. Regression results for the herbicide subset (N=18) 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

Model Type RR PLS RR PLS RR PLS 
TS –0.445 –6.44 –1.67 0.282 0.128 –0.300 
TS+TC 0.502 –0.440 0.358 0.143 0.079 –0.334 

TS+TC+3D 0.496 –0.436 0.353 0.136 0.084 –0.331 
TS –0.445 –6.44 –1.67 0.282 0.128 –0.300 
TC 0.596 0.227 0.385 0.258 0.012 –0.387 
3D 0.285 0.340 0.278 –1.07 0.198 –0.321 
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Table 6. Regression results for the polycyclic aromatic hydrocarbon subset (N=19) 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

Model Type RR PLS RR PLS RR PLS 
TS 0.746 0.698 0.437 0.416 0.842 0.772 
TS+TC 0.808 0.789 0.454 0.286 0.942 0.921 
TS+TC+3D 0.806 0.753 0.451 0.299 0.942 0.922 
TS 0.746 0.698 0.437 0.416 0.842 0.772 
TC 0.807 0.782 0.510 0.374 0.944 0.936 
3D 0.693 0.695 0.360 0.289 0.793 0.690 

 
Table 7. Regression results for the pesticides subset (N=30) 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

Model Type RR PLS RR PLS RR PLS 
TS 0.453 0.032 0.305 0.219 0.189 –0.697 
TS+TC 0.759 0.582 0.705 0.690 0.450 0.196 
TS+TC+3D 0.757 0.564 0.703 0.698 0.451 0.212 
TS 0.453 0.032 0.305 0.219 0.189 –0.697 
TC 0.735 0.593 0.699 0.644 0.440 0.156 
3D 0.289 0.311 0.187 0.052 0.073 –0.033 

 
Table 8. Regression results for the combined data sets (N=136) 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

Model Type RR PLS RR PLS RR PLS 
TS 0.577 0.480 0.483 0.400 0.482 0.456 
TS+TC 0.739 0.688 0.717 0.649 0.544 0.488 
TS+TC+3D 0.738 0.717 0.717 0.641 0.547 0.503 
TS 0.577 0.480 0.483 0.400 0.482 0.456 
TC 0.735 0.725 0.720 0.664 0.570 0.451 
3D 0.412 0.479 0.309 0.381 0.235 0.318 

 
With respect to Koc, again we see significant improvement in model quality upon the addition 

of TC descriptors to the TS indices, in most cases, with a notable exception in the aliphatic 
subset. Overall, Koc models are inferior to the water solubility models, with the cross-validated 
R2 values ranging from 0.385 to 0.705 for the various chemical subsets, and the best model (TC) 
for the combined set of chemicals being 0.720 (Table 8).  

Similar trends are seen with the Kow models, except that it is the herbicide data, rather than 
the aliphatic data, that is better modeled with the TS descriptors than with the TC. Very good TC 
models were found for the aromatics and the polycyclic aromatic hydrocarbons, with cross-
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validated R2 values of 0.927 and 0.944, respectively. The best Kow model for the total set of 136 
compounds was the TC model, with a cross-validated R2 value of 0.570 (Table 8).  

The statistical analyses of the complete set of 136 compounds revealed a number of 
compounds with high influence upon the models. These were considered, independently, for 
each of the three endpoints, and additional models for the combined set of chemicals were 
developed omitting these compounds as outliers (Table 9). For the S model, paraquat, cylclo-
phosphamide, and dechlorane were omitted. These same compounds were omitted from the Kow 
model, in addition to trifluralin, kepone, and trichlorofon. From the Koc model, diethylstilbestrol, 
trifluralin, 1,2:7,8-dibenzopyrene, cyclophosphamide, kepone, dechlorane, and trichloron were 
omitted. With the removal of these outliers, model improvement was observed. E.g., with respect 
to the TC models, the cross-validated R2 values improved from 0.735 to 0.846 for the S model, 
from 0.720 to 0.790 for the Koc model, and from 0.570 to 0.865 for the Kow model.  
 
Table 9. Regression results for combined data sets, with outliers removed with respect to each 
endpoint 

 S (R2
c.v.) Koc (R2

c.v.) Kow (R2
c.v.) 

 N = 133 N = 131 N = 130 
Model Type RR PLS RR PLS RR PLS 
TS 0.649 0.598 0.579 0.534 0.588 0.496 
TS+TC 0.848 0.848 0.790 0.764 0.862 0.848 
TS+TC+3D 0.849 0.846 0.766 0.749 0.864 0.849 
TS 0.649 0.598 0.579 0.534 0.588 0.496 
TC 0.846 0.848 0.790 0.738 0.865 0.858 
3D 0.495 0.582 0.334 0.464 0.316 0.447 

 
The results of the comparative property-based models are summarized in Table 10. The 

structure-based models were superior to the property-based models for the herbicides, pesticides, 
aromatics, and the combined set of compounds. In addition, it is the TS and TC descriptors that 
provide the best structural models for these chemical subsets. It should be noted that the TS 
descriptors alone provide the best solubility model for the aliphatic subset. The property-based 
models are superior to the structure-based models for the aliphatics and the polyaromatic 
hydrocarbons. With respect to the Koc models, the herbicides, aromatics, and the combined set of 
chemicals are better modeled with the structure-based descriptors, while the pesticides, 
aliphatics, and polycyclic aromatic hydrocarbons are better modeled with Kow and solubility. It is 
of interest to note that the 3D descriptors provide the best structure-based models for the 
aliphatics and the aromatics, with respect to the prediction of Koc.  
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Table 10. Comparative property-property correlations 

 S = f(Kow) Koc = f(Kow) Koc = f(S) 
Model Type R2

c.v. R c.v. R2
c.v. 

Herbicides (N = 18) 0.500 –0.128 –0.650 
Pesticides (N = 30) 0.614 0.718 0.751 
Aliphatic (N = 26) 0.806 0.873 0.827 
PAHs (N = 19) 0.862 0.633 0.832 
Aromatics (N = 43) 0.788 0.539 0.282 
All chemicals (N = 136) 0.721 0.693 0.706 

 
 
Conclusions 
 
We used computed molecular descriptors, viz., TS, TC, and geometrical or 3-D indices, in the 
prediction of water solubility, octanol/water partition coefficient, and soil/ sediment partition 
coefficient for a diverse set of chemicals. Results show that a combination of TS plus TC indices 
gives the best models, in most cases, for the entire set of molecules as well as the various 
subsets, with the addition of the 3-D descriptors to the independent variables resulting in either 
marginal or no improvement in model quality. It must be noted that the breakdown of the entire 
set into various subsets by Chu and Chan based on structure, e.g., aliphatic, aromatics, polycyclic 
aromatic, and biochemical action, e.g., herbicide, pesticide, is quite arbitrary. The diversity of the 
set of calculated molecular descriptors allowed for the development of good quality QSARs both 
for the structurally diverse set and for the various subsets. This is in line with our earlier 
mutagen/non-mutagen classification study with a diverse set of 508 chemicals where we 
obtained good results both for structurally defined smaller subsets and the entire diverse set.9 

We reported results based on two methods of QSAR model development: a) ridge regression 
(RR), and b) partial least squares (PLS). In earlier studies with various types of property and 
toxicity data,9,24 we reported RR, PLS, and principal components regression (PCR) results and 
found that RR is the most effective of the three, whereas PCR was the least useful based on 
cross-validated R2. PCR results were not reported in this paper for brevity. A perusal of the 
QSAR results in Tables 1–10 shows that here, also, RR usually outperformed PLS. 

The overall high quality of the models obtained for all three properties, viz., water solubility, 
and octanol/water partition coefficient, and soil/sediment partition coefficient, both for the 
diverse set and the different subsets using purely calculated structural descriptors indicate that 
QSARs developed in this paper will find application in the estimation of partitioning properties 
of chemicals of environmental concern. 
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