Synthesis and spectroscopy of the Tröger's base derived from 2aminoacridine

Fabien Carrée, ${ }^{\text {a }}$ Carmen Pardo, ${ }^{*}$ Jean-Pierre Galy, ${ }^{\text {b }}$ Gerard Boyer, ${ }^{\text {b }}$ Maxime Robin ${ }^{\text {b }}$ and José Elguero ${ }^{\text {c }}$
${ }^{a}$ Departamento de Química Orgánica I, Facultad de Ciencias Químicas, Universidad Complutense, E-28040 Madrid, Spain,
${ }^{b}$ Laboratoire de Valorisation de la Chimie Fine, Faculté de Sciences et Techniques de St. Jérôme, Université d'Aix-Marseille III, Av. Escadrille Normandie Niémen, 13397 Marseille Cédex 20, France, and
${ }^{\text {c }}$ Centro de Química Orgánica 'Manuel Lora-Tamayo', Juan de la Cierva 3, E-28006 Madrid, Spain
E-mail: chpardo@quim.ucm.es

Dedicated to Professor Miha Tisler on his $75^{\text {th }}$ anniversary
(received 08 Dec 02; accepted 28 Jan 03; published on the web 15 Feb 03)

Abstract

The analogs of the Tröger's base, 7,17-methano-6,7,16,17-tetrahydrodiacridino-[3,4-b:3', $\left.4^{\prime}-f\right]$ -[1,5]-diazocine was prepared starting from 2 -aminoacridine instead of 3 -aminoacridine. The new compound, 7,17-methano-6,7,16,17-tetrahydro-diacridino-[2,1-b:2', $\left.1^{\prime}-f\right]$-[1,5]-diazocine, has been fully characterized by ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ - NMR spectroscopies using mono- and bi-dimensional techniques. Other aminoacridine derivatives failed to afford Tröger's bases.

Keywords: Tröger's bases, 2-aminoacridine, NMR, ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR

Introduction

Some years ago, Lhomme and his coworkers described the synthesis of the Tröger's base analog, 7,17-methano-6,7,16,17-tetrahydrodiacridino-[3,4-b:3',4'-f]-[1,5]-diazocine, 2, from 3-aminoacridine $\mathbf{1}^{1,2}$ and reported its NMR properties ${ }^{3}$ and X-ray structure (see Scheme 1). ${ }^{4}$ Most important is the fact that this compound interacts differently with DNA than do other intercalants. ${ }^{5}$ Then, some of the same workers extended the synthesis and biological studies to other, but always 3-amino- substituted, acridines. ${ }^{6,7}$

Owing to our interest in Tröger's bases ${ }^{8-11}$ and in aminoacridines, ${ }^{12-14}$ we decided to study the reactivity of these last compounds towards formaldehyde in acid media. Only with 2-aminoacridine, 3, were we successful in obtaining the Tröger's base, 4.

2-aminoacridine 3

Scheme 1

Results and Discussion

Chemistry

Compound 4 was prepared according to the method of Tatibouët, Demeunynck and Lhomme ${ }^{15}$ from 2-aminoacridine, trifluoroacetic acid, and paraformaldehyde under argon for 24 h at room temperature. The compound was obtained only in 45% yield (isomer 2 was obtained in 90% yield). ${ }^{1,2}$

We carried out similar reactions with the compounds of Scheme 2.

2-aminoacridin- 2-aminothioacridin9 -one 5

7-amino-9-diacetyl-amino-1,2,3,4-tetrahydroacridine 7

2-amino-3-methoxy-acridin-9-one 8

Scheme 2

In no case were Tröger's bases identified; only intermediate compounds were isolated, in very low yields.

NMR spectroscopy

We have gathered in Tables 1 and 2 all the information available on compound 4. The protons of the methylene group at position 6 are named 6 n (endo) and 6 x (exo). We are using the numbering of Tröger's base:

4
The aromatic protons were assigned using double resonance and NOEDIF experiments. The ${ }^{13} \mathrm{C}$ NMR spectrum was assigned using first a DEPT experiment to identify the quaternary carbon atoms and then 2-dimensional ${ }^{13} \mathrm{C}^{1}{ }^{1} \mathrm{H}$ HMQC (one bond)- and HMBC (long distance) correlations.

The assignments in Table 2 are consistent both with other publications dealing with Tröger's bases, ${ }^{8,10}$ or with acridines. ${ }^{12-14}$

Conclusions

The formation of Tröger's bases from aminoacridines and their derivatives (acridin-9-ones, acridin-9-thiones) is a reaction of limited scope. Both $\mathbf{2}$ and $\mathbf{4}$ are "bent" isomers, which is the normal result in acridines: ${ }^{16-20}$ they cyclize towards the peri- position. For the moment, there is no hope of obtaining "linear" compounds such as $\mathbf{2 b}$ and $\mathbf{4 b}$, that would be very interesting scaffold structures.

2b

4b

Table 1. ${ }^{1} \mathrm{H}$ NMR data ($\delta \mathrm{ppm}, J \mathrm{~Hz}$) of compound 3 in CDCl_{3}

Proton	δ	Multiplicity	J

H-6n	4.90	d	${ }^{2} \mathrm{~J}_{6 \mathrm{n}, 6 \mathrm{x}}=16.8$
H-6x	5.15	d	
H-13	4.61	s	${ }^{3} \mathrm{~J}_{3,4}=9.3$
H-3	8.06	d	
H-4	7.68	d	${ }^{3} \mathrm{~J}_{1^{\prime}, 2^{\prime}}=8.4$
H-1'	7.97	d	${ }^{3} \mathrm{~J}_{2^{\prime}, 3^{\prime}}=7.0 ;{ }^{4} \mathrm{~J}_{2^{\prime}, 4^{\prime}}=1.2$
H-2'	7.53	m	${ }^{4} \mathrm{~J}_{1^{\prime}, 3^{\prime}}=1.5$
H-3'	7.75	m	${ }^{3} \mathrm{~J}_{3^{\prime}, 4^{\prime}}=8.5$
H-4	8.16	d	
H-10	8.58	s	

Table 2. ${ }^{13} \mathrm{C}$ NMR data ($\delta \mathrm{ppm}$) and ${ }^{13} \mathrm{C}-{ }^{1} \mathrm{H}$ correlations of compound $\mathbf{3}$ in CDCl_{3}

Carbon	DEPT	HMQC	HMBC	δ
C-1	---	---	8.06	124.9
C-2	---	---	$8.58,7.68$	147.4
C-3	CH	8.06	---	129.5
C-4	CH	7.68	---	129.8
C-4a	---		$5.15,4.90,4.61,8.06$	144.4
C-6	CH $_{2}$	$5.15,4.90$	4.61	54.5
C-13	CH $_{2}$	4.61	4.90	67.0
C-6a	---	--	$5.15,4.90,7.68,8.58$	120.4
C-1	CH	7.97	8.58	128.0
C-2,	CH	7.53	7.68	126.1
C-3,	CH	7.75	7.97	129.8
C-4	CH	8.16	7.53	129.1
C-4a,	---	---	$8.58,7.97$	147.8
C-10,	CH	8.58	7.97	128.9
C-10a	---	---	$7,53,8.16$	126.3

Experimental Section

General Procedures. Melting points were determined with a hot-stage microscope and are uncorrected. Column chromatography was performed on silica gel (Merck 60, 70-230 mesh). NMR spectra were recorded on a Bruker AC $200\left(200.13 \mathrm{MHz}\right.$ for ${ }^{1} \mathrm{H}$, and 50.32 MHz for $\left.{ }^{13} \mathrm{C}\right)$ and Bruker Avance-300 (300.13 MHz for ${ }^{1} \mathrm{H}$ and 75.48 MHz for ${ }^{13} \mathrm{C}$) spectrometers using standard conditions. Chemical shifts (δ, in ppm) are referred to internal $\mathrm{Me}_{4} \mathrm{Si}$. Mass spectra (HRMS) at 70 eV , using the electron-impact mode, were obtained on a VG Autospec spectrometer by "Laboratorio de Espectrometría de Masas-UAM, Madrid".

Syntheses

The following compounds have been described by some of us in previous publications: 2aminoacridine (3), ${ }^{21} 2$-aminoacridin-9-one (5), ${ }^{21}$ and 2-aminoacridin-9-thione (6). ${ }^{22}$

Synthesis of compound 7

7-Nitro-1,2,3,4-tetrahydro-9-acridinylamine (9). 5-Nitroanthranilonitrile ($1.63 \mathrm{~g}, 10 \mathrm{mmol}$), cyclohexanone ($1.1 \mathrm{~g}, 11 \mathrm{mmol}$), and sodium-dried toluene (50 mL) were placed in a two-necked round- bottomed flask. Boron trifluoride diethyl etherate ($1.56 \mathrm{~g}, 11 \mathrm{mmol}$) was added slowly via syringe, and the mixture heated under reflux for 24 h . On cooling, a yellow precipitate appeared, which was filtered and washed with water. The product was crystallized from $\mathrm{NaOH} 1 M(100 \mathrm{~mL})$. After filtration the product 11 was recovered pure (2.3 g , yield 94%, m.p. $261^{\circ} \mathrm{C}$. Lit. 264-266 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{23}{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}_{6}, \delta\right): 1.76\left[\mathrm{bs}, 4 \mathrm{H},\left(2-\mathrm{CH}_{2}\right)-2,3\right], 2.49\left[\mathrm{bs}, 2 \mathrm{H},\left(\mathrm{CH}_{2}\right)-1\right], 2.79[\mathrm{bs}, 2 \mathrm{H}$, $\left.\left(\mathrm{CH}_{2}\right)-4\right], 6.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 7.65(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{CH}-5), 8.10(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=8.8 \mathrm{~Hz}, \mathrm{CH}-6), 9.23(\mathrm{~d}$, $1 \mathrm{H}, \mathrm{J}=2.2 \mathrm{~Hz}, \mathrm{CH}-8) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, \delta\right): 22.36$ and $22.48(\mathrm{C}-2$ and $\mathrm{C}-3), 23.78(\mathrm{C}-1), 33.96$ (C-4), 110.73 (C-8a), 115.56 (C-9a), 120.65 (C-8), 121.42 (C-6), 129.52 (C-5), 142.07 (C-7), 149.28 (C-5a), 150.68 (C-9), 161.56 (C-4a). Anal. Calcd. for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 64.19; H, 5.39; N, 17.27. Found: C, 64.01 ; H, 5.43 ; N, 17.22\%.

10
N-Acetyl- \boldsymbol{N}-(7-nitro-1,2,3,4-tetrahydro-9-acridinyl)acetamide (10). Compound 9 (1 g, 4.11 mmol) and sodium acetate $(0.67 \mathrm{~g}, 8.22 \mathrm{mmol})$ were dissolved in acetic anhydride (40 mL), and stirred under reflux for 3 h . The reaction was monitored by TLC (dichloromethane:methanol, 9:1). The mixture was filtered and the filtrate poured onto crushed ice and neutralized with 3 M NaOH . The yellow needles of $\mathbf{1 0}$ were recovered by filtration (1.1 g , yield 79%, m.p. $166{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{\mathrm{d}}^{6}, \delta\right): 1.85\left[\mathrm{~m}, 4 \mathrm{H},\left(2-\mathrm{CH}_{2}\right)-2\right.$ and 3$], 2.25\left[\mathrm{~s}, 6 \mathrm{H},\left(2 \mathrm{CH}_{3}\right)-12\right], 2.68[\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz}$, $\left.\left(\mathrm{CH}_{2}\right)-1\right], 3.12\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.3 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)-4\right], 8.16[\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=9.3 \mathrm{~Hz}, \mathrm{CH}-5], 8.39(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=1.6$,
$8.8 \mathrm{~Hz}, \mathrm{CH}-6], 8.63(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=1.6 \mathrm{~Hz}, \mathrm{CH}-8] .{ }^{13} \mathrm{C}$ NMR ($\mathrm{DMSO}_{\mathrm{d}}^{6}$, δ): 21.54 and 21.92 (C-2 and $\mathrm{C}-3), 24.67(\mathrm{C}-1), 26.15(\mathrm{C}-12), 33.93$ (C-4), 119.16 (C-8), 122.94 (C-6), 123.74 (C-8a), 130.87 (C5), 131.70 (C-9a), 143.38 (C-9), 145.96 (C-7), 148.77 (C-5a), 165.21 (C-10a), 171.90 (C-11). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{4}$: C, 62.38; H, 5.23; N, 12.84. Found: C, 62.31; H, 5.23; N, 12.78\%.
N -Acetyl- N -(7-amino-1,2,3,4-tetrahydro-9-acridinyl)acetamide (7). Compound 10 (1.4 g, 4.7 $\mathrm{mmol})$ and Pd / C catalyst in ethanol $(100 \mathrm{~mL})$ were stirred vigorously under an H_{2} atmosphere for 2 h. After filtration, the solvent was removed under vacuum to give 7 as an orange powder $(0.72 \mathrm{~g}$, yield 84%, m.p. $173{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}_{-} \mathrm{d}_{6}, \delta\right): 1.77\left[\mathrm{~m}, 2 \mathrm{H},\left(\mathrm{CH}_{2}\right)-3\right], 1.84\left[\mathrm{~m}, 2 \mathrm{H},\left(\mathrm{CH}_{2}\right)-2\right]$, $2.03\left[\mathrm{~s}, 6 \mathrm{H},\left(2-\mathrm{CH}_{3}\right)-12\right], 2.56\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)-1\right], 2.96\left[\mathrm{t}, 2 \mathrm{H}, \mathrm{J}=6.4 \mathrm{~Hz},\left(\mathrm{CH}_{2}\right)-4\right], 5.66$ [s, 2H, (NH2)-7], $6.52(\mathrm{~d}, 1 \mathrm{H}, \mathrm{J}=2.3 \mathrm{~Hz}, \mathrm{CH}-8), 7.12(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}=8.9,2.3 \mathrm{~Hz}, \mathrm{CH}-6), 7.66(\mathrm{~d}, 2 \mathrm{H}$, $\mathrm{J}=8.9 \mathrm{~Hz}, \mathrm{CH}-5) .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{DMSO}_{6}, \delta\right): 21.98(\mathrm{C}-3), 22.56(\mathrm{C}-2), 24.42(\mathrm{C}-1), 25.82(\mathrm{C}-12)$, 32.86 (C-4), 98.09 (C-8), 121.55 (C-6), 125.98 (C-8a), 128.22 (C-9a), 129.61 (C-5), 138.71 (C-9), 141.43 (C-10a), 147.87 (C-7), 153.50 (C-4a), 171.83 (C-11). Anal. Calcd. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{2}$: C, 68.67; H, 6.44; N, 14.13. Found: C, 68.59; H, 6.39; N, 14.25\%.

Synthesis of compound 8

2-[4-(Acetylamino)-3-methoxyanilino]benzoic acid (12). 3-Methoxy-4-acetamidoaniline (11, 1.8 $\mathrm{g}, 10 \mathrm{mmol}$), 2.21 g of o-bromobenzoic acid (11 mmol), 1.65 g of anhydrous potassium carbonate $(12 \mathrm{mmol}), 0.05 \mathrm{~g}$ of powdered copper ${ }^{24}$ and 15 mL of ethyl methyl ketone were placed in a 250 mL round- bottomed flask, and sonicated in a bath at $80^{\circ} \mathrm{C}$ for 3 h . After removal of the solvent under vacuum, the brown residue was stirred in 80 mL of hot water, filtered and acidified to pH 5 with 2 M aqueous hydrochloric acid. The green precipitate of 15 was filtered off, washed with water, and dried (1.9 g, m.p. $234{ }^{\circ} \mathrm{C}$, yield 63%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}_{6}, \delta$): $2.06\left[\mathrm{~s}, 3 \mathrm{H},\left(\mathrm{CH}_{3}\right)-15\right], 3.81[\mathrm{~s}, 3 \mathrm{H}$, $\left.\left(\mathrm{CH}_{3}\right)-16\right], 6.77$ (m, 2H, CH-5,10), 6.90 (brs, $1 \mathrm{H}, \mathrm{CH}-2$), 7.33 (brs, $1 \mathrm{H}, \mathrm{CH}-9$), 7.36 (brd, 1H, J = $8.2 \mathrm{~Hz}, \mathrm{CH}-8), 7.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}-6,11), 9.11(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}-13) .{ }^{13} \mathrm{C}$ NMR (DMSO-d $\left.{ }_{6}, \delta\right): 23.90(\mathrm{C}-15)$,
55.86 (C-16), 105.98 (C-2), 1113.55 (C-8), 114.15 (C-6), 117.46 (C-4), 123.32 (C-5 and C-11), 131.87 (C-10), 134.44 (C-9), 137.05 (C-1 and C-7a), 150.90 (C-3), 168.47 (C-12 and C-14). Anal. Calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}$: C, 63.99; H, 5.37; N, 9.33. Found: C, 64.02; H, 5.39; N, 9.54\%.
2-Amino-3-methoxy-9(10H)-acridinone (8). Cyclization of 12 with $\mathrm{H}_{2} \mathrm{SO}_{4}$ gave only the 2-amino-3-methoxyacridine- $9(10 H)$-one 8, the acetyl group being lost during the acidic treatment. 2-[4-Acetylamino-3-methoxyanilino]benzoic acid $12(1 \mathrm{~g}, 3.3 \mathrm{mmol})$ and sulfuric acid $(96 \%)(10 \mathrm{ml})$ were stirred for 3 h at $100^{\circ} \mathrm{C}$, then poured onto ice $(100 \mathrm{~g})$ and neutralized with diluted ammonia (10\%). The green precipitate was washed with water and dried, then the green powder 8 was crystallized from hot ethanol (95\%) (0.7 g , m.p. $>300{ }^{\circ} \mathrm{C}$. Yield 87%). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{DMSO}-\mathrm{d}_{6}, \delta$): 3.92 [s, 3H, $\left.\left(\mathrm{CH}_{3}\right)-11\right], 4.92\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 6.85(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}-4), 7.13(\mathrm{td}, 1 \mathrm{H}, \mathrm{J}=1.1,7.7 \mathrm{~Hz}, \mathrm{CH}-7)$, 7.39 (s, 1H, CH-1), 7.42 (dd, 1H, J = 1.1, $7.15 \mathrm{~Hz}, \mathrm{CH}-5$), 7.58 (td, 1H, J = 1.1, 8.2 Hz, CH-6), 8.15 (dd, 1H, J = 1.1, $7.7 \mathrm{~Hz}, \mathrm{CH}-8$), 11.41 (s, 1H, NH-10). ${ }^{13} \mathrm{C}$ NMR (DMSO-d ${ }_{6}, \delta$): 56.08 (C-11), 97.14 (C-4), 106.65 (C-1), 115.76 (C-9a), 117.29 (C-5), 119.85 (C-8a), 120.51 (C-7), 126.09 (C-8), 132.37 (C-6), 134.37 (C-4a), 135.33 (C-10a), 140.39 (C-2), 153.71 (C-3), 175.53 (C-9). Anal. Calcd. For $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}$: C, 69.99; H, 5.03; N, 11.66. Found: C, 70.10; H, 5.08; N, 11.74\%.
7,17-Methano-6,7,16,17-tetrahydrodiacridino-[2,1-b:2',1’-f]-[1,5]-diazocine (4). To a solution of 2-aminoacridine ($3,200 \mathrm{mg}, 1.03 \mathrm{mmol}$) in trifluoroacetic acid (5 mL) under Ar atmosphere was added $50 \mathrm{mg}(1.65 \mathrm{mmol})$ of paraformaldehyde, with magnetic stirring. After 24 h stirring at r.t. the mixture was basified with 100 mL of 1 M aq. sodium hydroxide. The aqueous layer was extracted with $3 \times 50 \mathrm{~mL}$ of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the green-brown organic solution dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and evaporated at reduced pressure, affording 190 mg of a product that was purified by flash chromatography (eluent, ethyl acetate:hexane, 1:1): 95 mg of pure 4 was obtained (yield 45%), m.p. $270^{\circ} \mathrm{C}$ (dec.), IR (KBr) v 2924, 1624, 1526, 1466, 1427, 1205, 831 and $746 \mathrm{~cm}^{-1}$. Exact mass: calc. 424.16878, found 424.16800.

References

1. Salez, H.; Wardani, A.; Demeunynck, M.; Tatibouët, A.; Lhomme, J. Tetrahedron Lett. 1995, 36, 1271. See also, Demeunynck, M.; Moucheron, C.; Kirsch-De Mesmaeker, A. Tetrahedron Lett. 2002, 43, 261.
2. Tatibouët, A.; Fixler, N.; Demeunynck, M.; Lhomme, J. Tetrahedron 1997, 53, 2891.
3. Demeunynck, M.; Fontaine, C.; Lhomme, J. J. Magn. Reson. Chem. 1999, 37, 73.
4. Tatibouët, A.; Demeunynck, M.; Salez, H.; Arnaud, R.; Lhomme, J.; Courseille, C. Bull. Soc. Chim. Fr. 1997, 134, 495.
5. Coppel, Y.; Coulombeau, Ce.; Coulombeau, C.; Lhomme, J.; Dheu-Andries, M. L.; Vatton, P. J. Biomol. Struct. Dyn. 1994, 12, 637.
6. Tatibouët, A.; Demeunynck, M.; Arnaud, R.; Collet, A.; Lhomme, J. Chem. Commun. 1999, 161.
7. Demeunynck, M.; Tatibouët, A. Progress in Heterocyclic Chemistry 1999, 11, 1.
8. Pardo, C.; Ramos, M.; Fruchier, A.; Elguero J. Magn. Reson. Chem. 1996, 34, 708.
9. Cudero, J.; Pardo, C.; Ramos, M.; Gutiérrez-Puebla, E.; Monge, A.; Elguero, J. Tetrahedron 1997, 59, 2233.
10. Pardo, C.; Sesmilo, E.; Gutiérrez-Puebla, E.; Monge, A.; Elguero, J.; Fruchier, A. J. Org. Chem. 2001, 66, 1607.
11. Cerrada, L.; Cudero, J.; Elguero, J.; Pardo, C. Chem. Commun. 1993, 1713.
12. Faure, R.; Poulallion, P.; Galy, J.-P.; Giovannangelli, G.-L.; Soyfer, J.-C.; Barbe, J. Magn. Res. Chem. 1985, 23, 991.
13. Faure, R.; Galy, J.-P.; Barbe, J.; Boukir, A. L.; Vincent, E. J.; Boyer, G.; Elguero, J. Bull. Soc. Chim. Belg. 1991, 100, 639.
14. Robin, M.; Galy, J.-P.; Faure, R. Magn. Res. Chem. 2001, 39, 225.
15. Tatibouët, A.; Demeunynck, M.; Lhomme, J. Synth. Commun. 1996, 26, 4375.
16. Morel, S.; Galy, J.-P.; Elguero, J.; Barbe, J. Tetrahedron Lett. 1993, 34, 2609.
17. Galy, J.-P.; Morel, S.; Boyer, G.; Elguero, J. J. Heterocycl. Chem. 1996, 33, 1551.
18. Galy, J.-P.; Hanoun, J.-P.; Pique, V.; Jagerovic, N.; Elguero, J. J. Heterocycl. Chem. 1997, 34, 1781.
19. Robin, M.; Faure, R.; Perichaud, A.; Galy, J.-P. Heterocycles 2000, 53, 2, 387.
20. Robin, M.; Mialhe, S.; Pique, V.; Faure, R.; Galy, J.-P. J. Heterocycl. Chem. 2002, 39, 1.
21. Boyer, G.; Galy, J.-P.; Barbe, J. J. Heterocycl. Chem. 1991, $28,913$.
22. Ammor, S.; Galy, A.-M.; Galy, J.-P.; Barbe, J. J. Chem. Eng. Data 1986, 31, 374.
23. Pirrung, M. C.; Chau, J. H.-L.; Chen, J. Chem. Biol. 1995, 2, 621.
24. Hanoun, J.-P-; Galy, J.-P.; Tenaglia, A. Synth. Commun. 1995, 25, 2443.
