Chiral hexahydropyrrolo[2,1-b][1,3]thiazoles

Alan R. Katritzky,* Yuming Zhang, and Hai-Ying He
Center for Heterocyclic Compounds, Department of Chemistry, University of Florida, Gainesville, FL 32611-7200, USA
E-mail: katritzky@chem.ufl.edu
Dedicated to Professor Moreno-Manas on his 60 ${ }^{\text {th }}$ anniversary (received 03 Feb 02; accepted 01 Apr 02; published on the web 09 Apr 02)

Abstract

Chiral hexahydropyrrolo[2,1-b][1,3]thiazoles 11-16 were obtained in $56-82 \%$ yields via the nucleophilic substitutions of ethyl (3R,5S,7aS)-5-(1H-1,2,3-benzotriazol-1-yl)hexahydropyrrolo [2,1-b][1,3]thiazole-3-carboxylate 10 with benzenethiol, NaCN , triethyl phosphite, allyl silanes, silyl enol ethers, or PhZnCl . The D.e. values at the 5 -position range from 50% to $>99 \%$ depending on the nucleophiles.

Keywords: Chiral hexahydropyrrolothiazoles, nucleophilic substitution, benzotriazolyl intermediates, benzenethiol, sodium cyanide, triethyl phosphite, silyl enol ether, allyl silane

Introduction

Mannich condensation of succindialdehyde with (S)-2-phenylglycinol and benzotriazole forms hexahydropyrrolo[2,1-b][1,3]oxazole 1, which on treatment with Grignard reagents, followed by hydrogenation, gave chiral 2,5-disubstituted pyrrolidines. ${ }^{1}$ The nitrogen analogues, i.e., 1-phenylhexahydro- $1 H$-pyrrolo[1,2-a]imidazoles 2 and 3, have also been studied. ${ }^{2}$ We herein report stereoselective syntheses of the novel sulfur analogues, i.e., hexahydropyrrolo[2,1b][1,3]thiazoles 4.

Beaupere et al. synthesized chiral hexahydropyrrolo[2,1-b][1,3]thiazoles 5 in two steps from D-ribofuranose 6 and cysteamine. ${ }^{3}$ Hypoglycemic active tetrahydropyrrolo[2,1-b][1,3]thiazol$5(6 H)$-ones 7^{4} arise from condensations of 2-amino-1-ethanethiols with γ-oxo-carboxylic acids ${ }^{4,5}$ or γ-oxo-esters. ${ }^{6}$ However, hexahydropyrrolo[2,1-b][1,3]thiazoles 4 with substituents at the 3 and 5-positions appear to be novel.

$\mathrm{Bt}^{1}=$ Benzotriazol-1-yl

5

$\mathrm{Nu}^{-}-2\left(\mathrm{R}=\mathrm{Bt}^{1}\right)$
$\longrightarrow 3(\mathrm{R}=\mathrm{Nu})$

4

7

Results and Discussion

Synthesis of chiral benzotriazolyl intermediates 10. Reaction of L-cysteine ethyl ester hydrochloride 8 with succindialdehyde (9, obtained in situ by treatment of 2,5dimethoxytetrahydrofuran with 0.1 M HCl) and benzotriazole in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 24 h readily afforded benzotriazol-1-yl intermediate 10 in 88% yield as a single enantiomer (Scheme 1). The stereochemistry of $\mathbf{1 0}$ was determined by NOE NMR experiments. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 0}$ shows that $\mathrm{H}(3), \mathrm{H}(7 \mathrm{a})$ and $\mathrm{H}(5)$ appear at 4.31 ppm (doublet-doublet), 5.36 ppm (doublet) and 5.94 ppm (doublet-doublet), respectively. A significant positive NOE effect was observed between $\mathrm{H}(3)$ and $\mathrm{H}(5)$, and no NOE effect was observed between $\mathrm{H}(7 \mathrm{a})$ with either $\mathrm{H}(3)$ or $\mathrm{H}(5)$. Thus, NOE analysis demonstrates that in $\mathbf{1 0} \mathrm{H}(3)$ and $\mathrm{H}(5)$ are in cisorientation; while $\mathrm{H}(3)$ and $\mathrm{H}(7 \mathrm{a})$ are in trans-orientation. The relative configurations in $\mathbf{1 0}$ are consistent with the previous oxygen analogue 1. ${ }^{1}$ Therefore, four new bonds are simultaneously formed in one step to generate the hexahydropyrrolo[2,1-b][1,3]thiazole ring system.

Scheme 1

Nucleophilic substitutions of 10 with benzenethiol, NaCN or triethyl phosphite. (c.f. entry a-c in Table 1) We have shown that the benzotriazolyl group easily undergoes nucleophilic substitutions allowing its transformation to other functionalities. ${ }^{2,7}$ The results for the nucleophilic substitutions of $\mathbf{1 0}$ are summarized in Table 1.

Reaction of $\mathbf{1 0}$ with benzenethiol in the presence of sodium hydride afforded the product $\mathbf{1 1}$ with 81% D.e. in 62% yield. Since compound 11 is labile on silica gel, it was isolated on neutral alumina column chromatography. For the major diastereoisomer in 11, NOE experiment confirms the cis-orientation for $\mathrm{H}(3)(4.5 \mathrm{ppm}, \mathrm{m})$ and $\mathrm{H}(5)(4.1 \mathrm{ppm}, \mathrm{m})$ due to their positive NOE effect; thus the absolute configuration at 5-position is S.

The benzotriazolyl group was easily substituted by a cyano anion to afford 12 as a single enantiomer (>99\% D.e.) in 61\% yield. The NOE experiment also determined the cis-orientation of $\mathrm{H}(3)(4.47 \mathrm{ppm}, \mathrm{dd})$ and $\mathrm{H}(5)(4.2 \mathrm{ppm}, \mathrm{m})$ due to their positive NOE effect. Compound 13 was obtained as a single enantiomer in 56% yield by the treatment of $\mathbf{1 0}$ with triethyl phosphite in the presence of ZnBr_{2}. The Lewis acid, ZnBr_{2}, facilitates loss of the benzotriazolyl anion to form an iminium cation, which is then attacked by the P -nucleophile.

Table 1. Isolated yields and D. e. values for

Entry	Nucleophile (L.A.)	Product ${ }^{a}$	$\mathrm{Nu} \quad$ Yield	Yield (\%) D.e. (\%) ${ }^{\text {b }}$	
a	PhSH/NaH	11	PhS	62	81
b	NaCN	12	CN	61	>99
c	$\mathrm{P}(\mathrm{OEt})_{3}\left(\mathrm{ZnBr}_{2}\right)$	13	$\mathrm{PO}(\mathrm{OEt})_{2}$	56	>99
d	$\sim^{\mathrm{TMS}}\left(\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\right)$	14a	allyl	72	54
e		14b	$\mathrm{CH}_{2}=\mathrm{C}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2}$	77	80
f		15a	PhCOCH 2	77	50
g		15b	YR	76	>99
h		15c	$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COOCH}_{3}$	82	>99
i	PhZnCl	16	Ph	65	60

${ }^{\text {a }}$ All of the products are supported by their ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra and microanalyses results.
${ }^{\mathrm{b}}$ The D.e. values were determined by the ${ }^{1} \mathrm{H}$ NMR spectra.

Nucleophilic substitutions of 10 with allyl silanes or silyl enol ethers. Nucleophilic substitutions of $\mathbf{1 0}$ with allyl silanes in the presence of BF_{3} gave compounds $\mathbf{1 4 a}, \mathbf{b}$ in 72% and 77% yields, respectively (c.f. entry d,e in Table 1). The D.e. values for 14a,b (54\% and 80\%, respectively) indicate that a larger stereohindered nucleophile gives a product with a higher D.e. value. Benzotriazolyl intermediate $\mathbf{1 0}$ reacted with silyl enol ethers in the presence of BF_{3} to furnish hexahydropyrrolo[2,1-b][1,3]thiazoles 15a-c in $77 \%, 76 \%$ and 82% yields, respectively (c.f. entry f-h in Table 1). The D.e. values for 15a-c (50\%, >99\% and $>99 \%$, respectively) also indicate that among the silyl enol ethers, the larger stereohindered nucleophiles give higher D.e. values. NOE results confirm the cis-orientation between $\mathrm{H}(3)$ and $\mathrm{H}(5)$ in $\mathbf{1 5 b}$, \mathbf{c} and in the major diastereoisomers of 14a,b and $\mathbf{1 5 a}$.

For 15b, a new chiral center was formed at the α-position of cyclohexanone, and both ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR spectra indicate 15 b as a pure enantiomer. It is difficult to obtain direct experimental
evidences for its absolute configuration determination, since the oily product is not fit for X-ray analysis and the α-H of cyclohexanone is overlapped with other protons. However, the absolute configuration at the 5-position in 15b indicates that the silyl enol ether attacks the iminium cation intermediate below the imine plane. We believe that route A is more favorable than route B , due to the larger repulsion between the cyclohexene and the iminium cation ring systems for route B . Thus attack A leads to enantiopure 15b; none of $15 b^{\prime}$ was observed. Furthermore, the conformation in 15b is more stable than the conformation in $15 b^{\prime}$ due to the larger gauche butane interaction in 15b'. Therefore, the new chiral center is believed to have R-configuration (c.f. Scheme 2).

Scheme 2

Our result (anti configuration between the 5-position and the new chiral center in 15b) is also consistent with the reported anti configuration of β-amino ketones via reactions of iminium cations with enamines. ${ }^{8}$

Nucleophilic substitutions of 10 with PhZnCl. (c.f. entry i in Table 1) In order to keep the ester group in 10 , we used a weaker nucleophile, i.e., PhZnCl , obtained in situ by the treatment of phenylmagnesium bromide with ZnCl 2 . The nucleophilic substitutions of 10 with PhZnCl afforded the desired compound 16 in 65% yield with the major diastereoisomer having Rconfiguration at the 5 -position. The D.e. value can be improved from 50% (using 1.5 equivalents of ZnCl 2 based on PhMgBr) to 60% (using 4 equivalents of ZnCl 2 based on PhMgBr). The reason is probably that the Lewis acid, ZnCl 2 , facilitates loss of the benzotriazolyl anion to form an iminium cation, which undergoes SN1 nucleophilic substitutions. Thus the addition of more ZnCl 2 avoids SN 2 nucleophilic substitutions leading to an inversion of the absolute configuration at the 5-position.

Compared to the configuration of Bt intermediate 10, the absolute configurations at the 5position remains unchanged in the major diastereoisomers of 11-16. This result is consistent with our previous report on the nucleophilic substitution of oxygen analogue $\mathbf{1}$ with $\mathrm{PhZnCl} .{ }^{1}$

Thus we believe that the nucleophilic substitutions of $\mathbf{1 0}$ should predominantly undergo $\mathrm{S}_{\mathrm{N}} 1$ route instead of $\mathrm{S}_{\mathrm{N}} 2$ route and that thermodynamic stability may play an important role on the determination of stereochemistry of final products.

In summary, we have developed a straightforward and efficient route to chiral hexahydropyrrolo[2,1-b][1,3]thiazoles $\mathbf{1 1 - 1 6}$ by the nucleophilic substitutions of ethyl (3R,5S,7aS)-5-(1H-1,2,3-benzotriazol-1-yl)hexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate 10 with a variety of nucleophiles, such as benzenethiol, NaCN , triethyl phosphite, allyl silanes, silyl enol ethers or an organozinc reagent. Compound $\mathbf{1 0}$ was readily obtained via the Mannich condensation of L-cysteine ethyl ester hydrochloride $\mathbf{8}$ with succindialdehyde $\mathbf{9}$ and benzotriazole.

Experimental Section

General Procedures. Melting points were determined using a Bristoline hot-stage microscope and are uncorrected. ${ }^{1} \mathrm{H}$ NMR (300 MHz), ${ }^{13} \mathrm{C}$ NMR (75 MHz) and NOE spectra were recorded on a Gemini 300 NMR spectrometer in CDCl_{3} (with TMS for ${ }^{1} \mathrm{H}$ and chloroform-d for ${ }^{13} \mathrm{C}$ as the internal reference). HRMS were measured on an AEI-30 mass spectrometer. Elemental analyses were performed on a Carlo Erba-1106 instrument. Optical rotation values were measured by a Perkin-Elmer 341 polarimeter with the use of the sodium D line. Column chromatography was performed on silica gel (200-425 mesh), unless otherwise stated. All of the reactions were carried out under N_{2}.

General procedure for the preparation of Bt intermediates

A mixture of 2,5 -dimethoxytetrahydrofuran ($0.66 \mathrm{~g}, 5.1 \mathrm{mmol}$) and HCl aqueous solution (0.1 $\mathrm{M}, 20 \mathrm{~mL}$) was heated to $100^{\circ} \mathrm{C}$ for 45 mins , then cooled to room temperature. $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$, benzotriazole ($0.61 \mathrm{~g}, 5.1 \mathrm{mmol}$) and L-cysteine ethyl ester hydrochloride ($8,0.93 \mathrm{~g}, 5 \mathrm{mmol}$) were successively added and stirred at room temperature for 24 h . The reaction mixture was washed with saturated $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic phase was washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by neutral alumina (80-200 mesh) column chromatography with hexanes/EtOAc (1:1) as an eluent to give $\mathbf{1 0}$.
Ethyl (3R,5S,7aS)-5-(1H-1,2,3-benzotriazol-1-yl)hexahydropyrrolo[2,1-b][1,3]thiazole-3carboxylate (10). Colorless prisms (from hexanes/Et ${ }_{2} \mathrm{O}$); yield, 88%; mp $57.5-58.0^{\circ} \mathrm{C}$; $[\alpha]^{25}{ }_{\mathrm{D}}=$ -32.6 (c 1.93, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 8.06(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{dd}, J=7.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BtCHN}), 5.36(\mathrm{~d}, J=4.4 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{NCHS}$), 4.31 (dd, $J=7.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NCHCOOEt}), 4.03-3.94$ (m, 2H), 3.53-3.40 (m, 2H), 2.80-2.72 (m, 2H), 2.37-2.31 (m, 2H), $1.05(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.2,146.9,131.5$, 127.2, 124.0, 119.9, 112.0, 80.6, 72.8, 68.1, 61.3, 35.2, 30.4, 29.6, 13.7. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}$: C, 56.58 ; H, 5.70; N, 17.60. Found: C, 56.94; H, 5.60; N, 17.69.

Procedure for the reaction of $\mathbf{1 0}$ with benzenethiol

To a solution of benzenethiol ($0.33 \mathrm{~g}, 3.0 \mathrm{mmol}$) in dry THF (20 mL), $\mathrm{NaH}(60 \%$ in mineral oil, $0.10 \mathrm{~g}, 4 \mathrm{mmol}$) was added, and the mixture was stirred at $25^{\circ} \mathrm{C}$ for 30 mins . One drop of methanol was added to quench excess NaH and then Bt intermediate $\mathbf{1 0}$ ($0.64 \mathrm{~g}, 2 \mathrm{mmol}$) was added. The mixture was stirred at $25{ }^{\circ} \mathrm{C}$ for 24 h . After removal of THF in vacuo, 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ was added to the residue and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by neutral alumina (80-200 mesh) column chromatography with hexanes/EtOAc (2:1) as an eluent to give 11.
Ethyl (3R,7aS)-5-(phenylsulfanyl)hexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate (11). Obtained as a mixture of diastereoisomers with 81% D.e. value at the 5 -position and NMR data are reported for its major stereoisomer ($3 R, 5 S, 7 \mathrm{aS}$); colorless oil; yield, 62%; ${ }^{1} \mathrm{H}$ NMR $\delta 7.56$ (d, $J=3.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.32-7.16(\mathrm{~m}, 3 \mathrm{H}), 5.07(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.54-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.10(\mathrm{~m}$, 3H), $3.30-3.16(\mathrm{~m}, 2 \mathrm{H}), 2.60-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.12-1.88(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 171.0,134.3,132.7,128.7,127.9,73.6,73.2,68.8,61.3,34.7,31.0,29.9,14.1$. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}_{2}$: C, 58.22; H, 6.19; N, 4.53. Found: C, 58.23; H, 6.04; N, 4.87.

Procedure for the reaction of 10 with $\mathbf{N a C N}$

A mixture of $\mathrm{NaCN}(0.1 \mathrm{~g}, 2.0 \mathrm{mmol})$ and $\mathbf{1 0}(0.48 \mathrm{~g}, 1.5 \mathrm{mmol})$ in DMSO $(7 \mathrm{~mL})$ was stirred at $25^{\circ} \mathrm{C}$ for 20 h . The solution was diluted with EtOAc and washed with $5 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$, brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by silica gel column chromatography with hexanes/EtOAc (5:1) as an eluent to give 12.
Ethyl (3R,5R,7aS)-5-cyanohexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate (12). Colorless oil; yield, $61 \% ;[\alpha]^{25}=-179\left(c \quad 1.83, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.06-5.03(\mathrm{~m}, 1 \mathrm{H}), 4.47$ (dd, $J=7.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.17 (m, 3H), 3.68 (dd, $J=11.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}$), 3.38 (dd, $J=11.4$, 4.0 Hz, 1H), 2.54-2.38 (m, 3H), 2.34-2.22 (m, 1H), $1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 170.8$, 118.9, 72.8, 66.9, 61.6, 52.6, 37.1, 31.3, 30.8, 14.1. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$: C, 53.08; H, 6.24; N, 12.38. Found: C, 53.46; H, 5.92; N, 12.71.

Procedure for the reaction of 10 with triethyl phosphite. To a solution of 10 (0.64 g , $2.0 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}, \mathrm{ZnBr}_{2}(0.89 \mathrm{~g}, 4.0 \mathrm{mmol})$ and triethyl phosphite ($0.68 \mathrm{~mL}, 4.0 \mathrm{mmol}$) were sequentially added. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h and at room temperature overnight, and then quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$. After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, the combined organic layers were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the desired product 13 was purified by column chromatography (silica gel) with hexanes/EtOAc (2:1) as an eluent.
Ethyl (3R,5S,7aS)-5-(diethoxyphosphoryl)hexahydropyrrolo[2,1-b][1,3]thiazole-3carboxylate (13). Colorless oil; yield, 56%; $[\alpha]^{25}{ }_{\mathrm{D}}=-74.6$ (c 1.39, CHCl_{3}); ${ }^{1} \mathrm{H}$ NMR $\delta 5.09(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}$), 4.66 (dd, $J=6.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.12(\mathrm{~m}, 6 \mathrm{H}), 3.38-3.26(\mathrm{~m}, 2 \mathrm{H}), 3.00(\mathrm{dd}$,
$J=9.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.20-1.96(\mathrm{~m}, 2 \mathrm{H}), 1.34(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\delta 170.9,75.1(\mathrm{~d}, J=17.8 \mathrm{~Hz}), 70.5(\mathrm{~d}, J=3.1$ $\mathrm{Hz}), 63.4(\mathrm{~d}, J=6.9 \mathrm{~Hz}), 62.2(\mathrm{~d}, J=7.4 \mathrm{~Hz}), 61.2,59.2(\mathrm{~d}, J=176.9 \mathrm{~Hz}), 34.4,31.0(\mathrm{~d}, J=4.8$ Hz), 24.5 (d, $J=2.3 \mathrm{~Hz}$), 16.5 (d, $J=5.7 \mathrm{~Hz}$), 16.4 (d, $J=5.7 \mathrm{~Hz}$), 14.0. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PS}: \mathrm{C}, 46.28 ; \mathrm{H}, 7.17$. Found: C, $46.45 ; \mathrm{H}, 7.31$. HRMS Calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NO}_{5} \mathrm{PS}$ 377.1112 (M), found 377.1113 .

General procedure for the reaction of 10 with allyl silanes and silyl enol ethers

To a solution of $\mathbf{1 0}(0.64 \mathrm{~g}, 2.0 \mathrm{mmol})$ and allyl silanes (3 mmol) or silyl enol ethers (3 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, was added $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}(0.36 \mathrm{~mL}, 3 \mathrm{mmol})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2 h and at $25{ }^{\circ} \mathrm{C}$ overnight. The mixture was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by column chromatography (silica gel) with hexane/EtOAc (5:1) as eluent to afford 14a,b or 15a-c.
Ethyl (3R,7aS)-5-allylhexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate (14a). Obtained as a mixture of diastereoisomers with 54% D.e. value at the 5-position and NMR data are reported for its major stereoisomer ($3 R, 5 R, 7 \mathrm{aS}$); colorless oil; yield, 72%; ${ }^{1} \mathrm{H}$ NMR $\delta 5.90-5.64(\mathrm{~m}, 1 \mathrm{H})$, 5.16-4.98 (m, 3H), 4.36-4.25 (m, 1H), 4.19 (q, J = 7.2 Hz, 2H), 3.37-3.16 (m, 2H), 2.82-2.68 (m, 1H), 2.44-1.92 (m, 5H), 1.68-1.54 (m, 1H), 1.28 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 171.6, 135.2, 117.0, 75.3, 69.2, 63.1, 61.2, 40.2, 34.9, 30.0, 29.1, 14.1. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}$, 59.72; H, 7.93; N, 5.80. Found: C, 59.49; H, 7.80; N, 6.12.

Ethyl (3R,7aS)-5-(2-methyl-2-propenyl)hexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate (14b). Obtained as a mixture of diastereoisomers with 80% D.e. value at the 5 -position and NMR data are reported for its major stereoisomer ($3 R, 5 R, 7 \mathrm{aS}$); colorless oil; yield, 77%; ${ }^{1} \mathrm{H}$ NMR δ 5.12 (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.78$ (s, 1H), 4.73 (s, 1H), 4.30 (dd, $J=6.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (q, $J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 3.33 (dd, $J=11.1,6.9 \mathrm{~Hz}, 1 \mathrm{H}$), 3.26 (dd, $J=11.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.92-2.80(\mathrm{~m}, 1 \mathrm{H})$, 2.46-2.26 (m, 2H), 2.22-1.98 (m, 3H), 1.74 (s, 3H), 1.70-1.52 (m, 1H), 1.27 (t, J = 7.1 Hz, 3H); ${ }^{13} \mathrm{C}$ NMR $\delta 171.5,142.9,112.4,75.3,69.1,61.6,61.1,44.3,34.8,29.9,29.4,22.9,14.1$. Anal. Calcd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 61.14$; H, 8.29; N, 5.48. Found: C, 61.50; H, 8.53; N, 5.75.
Ethyl (3R,7aS)-5-(2-oxo-2-phenylethyl)hexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate (15a). Obtained as a mixture of diastereoisomers with 50% D.e. value at the 5 -position and NMR data are reported for its major stereoisomer ($3 R, 5 R, 7 \mathrm{aS}$); colorless oil; yield, 77%; ${ }^{1} \mathrm{H}$ NMR δ 7.75 (d, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.58 (t, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.47 (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), 5.12 (d, $J=5.4 \mathrm{~Hz}$, 1 H), 4.41 (dd, $J=6.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 4.24-4.08 (m, 2H), 3.60-3.22 (m, 3H), 3.20-3.04 (m, 2H), 2.56-2.28 (m, 2H), 2.20-1.96(m, 1H), 1.64-1.50(m, 1H), $1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR δ 199.0, 171.5, 137.0, 133.2, 128.6, 128.1, 74.7, 69.9, 61.2, 59.8, 45.6, 35.0, 30.5, 30.0, 14.1. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3} \mathrm{~S}: \mathrm{C}, 63.92$; H, 6.63; N, 4.38. Found: C, 63.79; H, 6.53; N, 4.75.
Ethyl (3R,5R,7aS)-5-[(1R)-2-oxocyclohexyl]hexahydropyrrolo[2,1-b][1,3]thiazole-3carboxylate (15b). Colorless oil; yield, 76\%; $[\alpha]^{25}{ }_{\mathrm{D}}=-103\left(c 1.67, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\delta 5.02(\mathrm{~d}$, $J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.25(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 2 \mathrm{H})$,
3.22-3.10 (m, 1H), 2.50-2.20 (m, 6H), 2.20-1.80 (m, 3H), 1.80-1.40 (m, 4H), 1.26 (t, J = 7.0 $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 213.0,171.2,75.1,72.0,62.4,60.9,57.2,42.6,34.9,30.8,30.2,28.3,28.0$, 25.0, 14.0. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{~S}$: C, 60.58; H, 7.79; N, 4.71. Found: C, 60.81; H, 8.05; N, 4.88.

Ethyl(3R,5R,7aS)-5-[(1-methoxycarbonyl-1-methyl)ethyl]hexahydropyrrolo[2,1-
b] [1,3]thiazole-3-carboxylate (15c). Colorless oil; yield, 82%; $[\alpha]^{25}{ }_{\mathrm{D}}=-113\left(c 2.18, \mathrm{CHCl}_{3}\right)$; ${ }^{1} \mathrm{H}$ NMR $\delta 5.06(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.67$ (s, 3H), 3.30-3.18 (m, 2H), 3.14 (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.34-2.16 (m, 2H), 2.16-1.98 (m, 1H), $1.60-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.20(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 177.9,171.5$, $75.7,72.9,70.2,61.2,51.9,48.3,35.2,32.0,25.0,21.8,20.9,14.3$. Anal. Calcd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$: C, 55.79; H, 7.69; N, 4.65. Found: C, 56.04; H, 7.97; N, 4.73.

Procedure for the reaction of 10 with $\mathbf{P h Z n C l}$

To a solution of $\mathrm{PhMgBr}\left(1.0 \mathrm{M}\right.$ in THF; $2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}, \mathrm{ZnCl}_{2}\left(0.5 \mathrm{M}\right.$ in $\mathrm{Et}_{2} \mathrm{O}$; $16.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$) was added dropwise. After stirring for 30 min , a solution of $10(0.48 \mathrm{~g}$, $1.5 \mathrm{mmol})$ in dry THF (10 mL) was added dropwise. The reaction mixture was stirred at $25^{\circ} \mathrm{C}$ overnight. The mixture was quenched with $10 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After removal of the solvent in vacuo, the residue was purified by column chromatography (silica gel) with hexanes/EtOAc (5:1) as an eluent to afford 16.
Ethyl (3R,7aS)-5-phenylhexahydropyrrolo[2,1-b][1,3]thiazole-3-carboxylate (16). Obtained as a mixture of diastereoisomers with 60% D.e. value at the 5 -position and NMR data are reported for its major stereoisomer ($3 R, 5 R, 7 \mathrm{aS}$); colorless oil; yield, 65%; ${ }^{1} \mathrm{H}$ NMR $\delta 7.50-7.10$ (m, 5H), 5.26 (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}$), 4.08-3.90 (m, 2H), 3.67 (dd, $J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.56 (t, $J=$ $10.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.14 (dd, $J=10.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.04 (dd, $J=10.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.74-2.44 (m, 2H), 2.16-2.04 (m, 1H), 1.86-1.72 (m, 1H), $0.83(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\delta 168.6,144.2$, 128.0, 127.3, 126.9, 77.2, 69.5, 62.4, 61.0, 34.7, 32.9, 30.1, 13.4. GC-MS (EI): 277 (M ${ }^{+}$), 204 (b), 177, 144, 128, 117, 91, 77, 54. Anal. Calcd for $\mathrm{C}_{15} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}: \mathrm{C}, 64.95 ; \mathrm{H}, 6.90$; $\mathrm{N}, 5.05$. Found: C, 64.82; H, 7.11; N, 5.40.

References

1. Katritzky, A. R.; Cui, X.-L.; Yang, B.; Steel, P. J. Tetrahedron Lett. 1998, 39, 1697.
2. Katritzky, A. R.; Qiu, G.; He, H.-Y.; Yang, B. J. Org. Chem. 2000, 65, 3683.
3. (a) Marek, D.; Wadouachi, A.; Uzan, R.; Beaupere, D.; Nowogrocki, G.; Laplace, G. Tetrahedron Lett. 1996, 37, 49; (b) Marek, D.; Wadouachi, A.; Beaupere, D. Tetrahedron: Asymmetry 1997, 8, 3223; (c) Marek, D.; Wadouachi, A.; Beaupere, D. Synthesis 1999, 839.
4. Aicher, T. D.; Balkan, B.; Bell, P. A.; Brand, L. J.; Cheon, S. H.; Deems, R. O.; Fell, J. B.; Fillers, W. S.; Fraser, J. D.; Gao, J.; Knorr, D. C.; Kahle, G. G.; Leone, C. L.; Nadelson, J.; Simpson, R.; Smith, H. C. J. Med. Chem. 1998, 41, 4556.
5. (a) Oliver, G. L.; Dann, J. R.; Gates, Jr., J. W. J. Am. Chem. Soc. 1958, 80, 702. (b) Hiskey, R. G.; Dominianni, S. J. J. Org. Chem. 1965, 30, 1506. (c) Aicher, T. D.; Knorr, D. C.; Smith, H. C. Tetrahedron Lett. 1998, 39, 8579.
6. (a) Baldwin, J. E.; Christie, M. A. J. Am. Chem. Soc. 1978, 100, 4597; (b) Baldwin, J. E.; Lowe, C.; Schofield, C. J.; Lee, E. Tetrahedron Lett. 1986, 27, 3461; (c) Baldwin, J. E.; Norris, W. J.; Freeman, R. T.; Bradley, M.; Adlington, R. M.; Long-Fox, S.; Schofield, C. J. J. Chem. Soc., Chem. Commun. 1988, 1128. (d) Allen, N. E.; Boyd, D. B.; Campbell, J. B.; Deeter, J. B.; Elzey, T. K.; Foster, B. J.; Hatfield, L. D.; Hobbs, Jr., J. N.; Hornback, W. J.; Hunden, D. C.; Jones, N. D.; Kinnick, M. D.; Morin, Jr., J. M.; Munroe, J. E.; Swartzendruber, J. K.; Vogt, D. G. Tetrahedron 1989, 45, 1905. (e) Baldwin, J. E.; Freeman, R. T.; Lowe, C.; Schofield, C. J.; Lee, E. Tetrahedron 1989, 45, 4537; (f) Baldwin, J. E.; Lee, E. Tetrahedron 1986, 42, 6551.
7. (a) Katritzky, A. R.; Lan, X.; Yang, J. Z.; Denisko, O. V. Chem. Rev. 1998, 98, 409. (b) Katritzky, A. R.; Fan, W.-Q. J. Org. Chem. 1990, 55, 3205. (c) Katritzky, A. R.; Mehta, S.; He, H.-Y.; Cui, X. J. Org. Chem. 2000, 65, 4364. (d) Katritzky, A. R.; He, H.-Y.; Jiang, R.; Long, Q. Tetrahedron: Asymmetry 2001, 12, 2427.
8. Arend, M.; Risch, N. Synlett 1997, 974.
