The reaction of 2-chloro-1-methoxynaphthalene and 2-anthraceneforming conditions: convenient synthesis of annular polycyclic aromatic compounds

Yingchun Lu, Cheng-Han Wu, and Ed Biehl*

Chemistry Department, Southern Methodist University, Dallas, TX 75275 (received 07 Oct 2002; accepted 01 Dec 2002; published on the web 09 Dec 2002)

Abstract

2-Bromobiphenylene and 2-chloro-1-methoxynaphthalene react with 3-cyanophthalides in the presence of LDA or LiTMP to give functionalized benzo[3,4]cyclobuta[1,2-*b*]anthracene-6,11-diones and naphthacene-5,12-diones, respectively.

Keywords: 2,3-Dehydronaphthalene, benzo[3,4]cyclobuta[1,2-*b*]anthracene-6,11-dione, LDA, LiTMP, cycloadditions

Introduction

Biphenylenes have recently been studied extensively because they can serve as a unit of new carbon allotropes and can function as spacers and building blocks for functionalized organic materials.¹ One of the more important synthesis of functionalized biphenyls involves the intramolecular coupling of benzoannulated zincacylopentadiene intermediates prepared from 2,2'-diaryls with ZnCl₂.² During the course of our studies on the synthetic use of aryne reactions, we³ have prepared a wide variety of functionalized polycyclic quinones from the reaction of haloarenes with 3-lithiophthalides in the presence of sterically hindered bases such as LDA and LiTMP. It occurred to us that 2-bromobiphenylene might react similarly to give functionalized annulated biphenyls. Although 2-bromobiphenylene can in principal give two benzynes, *i.e.* 1,2dehydro and 2,3-dehydrobiphenylene, our calculations have shown the 2,3-intermediate to be 4.47 kcal/mol more stable than the 1,2-isomer. The relative stability of 1,2 and 2,3dehydrobiphenylenes were calculated with complete optimization of all geometric variables using the standard AM1 procedure⁴ incorporated in version 3.1 of Spartan Package.⁵ Furthermore, the latter being symmetric would give a single aryne product. Along similar lines, we decided to investigate also the reaction of 2-chloro-1-methoxynaphthalene with certain 3cyanophalides. The well-proven *meta*-directing effect of the methoxy group⁶ should also afford a single aryne product.

Results and Discussion

These expectations were indeed realized and are illustrated in Schemes 1 and 2. As shown in Scheme, 1, 2-bromobiphenylene (2) and 3-cyanophthalides (**3a-c**) were treated with LDA and LiTMP to provide 2,3-dehydrobiphenylene (4) and the 3-lithio-3-cyanophthalides (**5a-c**), respectively. These intermediates then underwent cycloaddition to give the corresponding benzo[3,4]cyclobuta[1,2-*b*]anthracene-6,11-dione (**6a-c**) in 60-80% yields after usual workup. The benzyne precursor, 2-bromobiphenylene (2) was prepared by the bromination of biphenylene (1) with 1,8-diazabicyclo[5.4.0]undec-7-ene in the presence of HgCl₂ in 75% yield.⁷ This method is superior to simple bromination which gives **2** in only 50% along with some polybromides.⁸ The 3-cyanophthalides (**3a-c**) were on hand from previous studies and IR spectra were consistent with proposed structures.

Scheme 2

As shown in Scheme 2, 1-methoxynaphthacene- (10a) and 1,3,6, trimethoxynaphthacene-5,12-dione (10b) were obtained in 75 and 87% yields, respectively, from the reaction of 2chloro-1-methoxynaphthalene (7) and 3-cyanophthalides (3a) and 3b). The regioselective

General Papers

addition to 1-methoxy-2,3-dehydronaphthalene (8) was clearly shown in the case of **5b** to give a single adduct (9b). Obviously, no regiochemistry is involved in the case of the unsubstituted lithiated nitrile **5a**. The IR, ¹H NMR, ¹³C NMR, and mass spectra were consistent with proposed structures.

We next treated **7** with α -cyano-*o*-tolunitrile **11** and LDA expecting aryne **8** and α -lithio- α -cyano-*o*-tolunitrile (**12**) to undergo [2+4]cycloaddition⁹ to give the aminonaphthacene **13**. However, as shown in Scheme 3, this reaction proceeded by a tandem addition-rearrangement pathway¹⁰ in which **8** and **12** reacted *via* a [2+2] cycloaddition pathway to the benzocyclobutenium adduct (**14**). Intermediate **14** then opened up to give the rearranged product, 2-cyano-3-(cyanobenzyl)-1-methoxynaphthalene (**15**) in 40% yield, after quenching.

Scheme 3

In conclusion, we have shown that 2,3-dehydrobiphenylene and 1-methoxy-2,3-dehydronaphthalene can serve as valuable intermediates in the synthesis of functionalized benzo[3,4]cyclobuta[1,2-b]anthracene-6,11-dione and naphthacene-5,12-dione, respectively.

Experimental Section

General Procedures. Melting points were taken on Fisher-Johns apparatus and are uncorrected. NMR spectra were recorded on a 400 MHz Brucker spectrometer: chemical shifts were related to TMS as internal standard.. Chemicals were purchased from commercial sources. LDA and BuLi were purchased as solutions in hexanes. The glassware heated at 125 °C in oven overnight prior

to use. Benzyne reactions were done under an atmosphere of dry O_2 -free N_2 contained in a balloon possessing a needle protruding through a rubber septum attached to one of the reaction flask necks.

Biphenylene (1),² 2-bromobiphenylene (2)⁷ and 2-chloro-1-methoxynaphthalene (7)¹¹ were prepared by literature procedures. The 3-cyanophthalides (**3a-c**) were available from previous studies.

General procedure for the reaction of haloarenes (2 and 7) with 3-cyanophthalides (3a-c)

In a flame-dried flask flushed with N₂ LDA (15 mmol) was prepared by adding 6 mL of *n*-BuLi (2.5 M in hexanes) to a solution containing diisopropylamine (15 mg, 15 mmol) in THF (30 mL) at -70 °C. After stirring for 10 min, 5 mmol of the appropriate nitrile (**3a-c**) in 30 mL of THF was added and the temperature was allowed to warm to -40 °C. At this point, 5 mmol of the haloarene (**2** or **7**) in 30 mL of THF was added over a period of 20 min while maintaining the temperature between -30 to -40 °C. After the addition of the haloarene, the resulting mixture was allowed to warm to rt where it was stirred for an additional 3 h. The resulting dark reddish solution was quenched with 30 mL of saturated NH₄Cl, and the solvent removed by rotary evaporation. The residue was extracted with three 20 mL portions of CH₂Cl₂. The fractions were combined, washed with 25 ml of 5% HCl, dried (Na₂SO₄) and concentrated (rotary evaporation) to provide a dark viscous liquid. The liquid was purified by flash chromatography (silica gel) using hexane/acetone (19:1) as eluent to give a solid product which was further purified by recrystallization from CH₂Cl₂-hexane. The physical properties of the products are given below.

Benzo[3,4]cyclobuta[1,2-*b*]**anthracene-6,11-dione (6a).** Yellow powder, mp 218-219 ⁰C. IR (KBr) v 1684 cm^{-1. 1}H NMR (CDCl₃) δ 6.81 (d, *J* = 8.0 Hz, 2 H), 6.92 (m, 2 H), 7.32 (d, *J* = 8.0 Hz, 1 H), 7.73 (m, 2 H), 7.79 (d, *J* = 8.1 Hz, 1 H), 8.23 (m, 1 H), 8.32 (m, 1 H). ¹³C NMR (CDCl₃) δ 119.2, 120.1, 121.9, 123.6, 126.8, 127.7, 130.8, 130.9, 131.0, 131.8, 133.7, 133.8, 134.1, 149.3, 151.1, 153.5, 158.2, 181.8, 182.2. Anal. Calcd for C₂₀H₁₀O₂: C, 85.09; H, 3.57. Found: 85.15; H, 3 66.

7-Methoxybenzo[3,4]cyclobuta[1,2-*b***]anthracene-6,11-dione (6b).** Yellow powder, mp 238-240 0 C. IR (KBr) v 1667 cm^{-1. 1}H NMR (CDCl₃) δ 4.01 (s, 3 H), 6.91 (m, 4 H), 7.3 1(d, *J* = 8.1, 1 H), 7.41(s,1 H), 7.52 (s, 1 H), 7.7 (t, *J* = 8.1 Hz, 1 H), 7.94 (d, *J* = 8.1 Hz, 1 H), 8.2 (m, 1 H), 8.3 (m, 1 H). 13 C NMR (CDCl₃) δ 56.6, 113.0, 113.9, 117.8, 119.6, 119.7, 119.8, 1303, 130.4, 134.8, 135.2, 137.0, 137.9, 149.6, 156.2, 157.3, 160.1, 171.2, 182.1, 182.9. Anal. Calcd for C₂₁H₁₂O₃: C, 80.76; H, 3.87. Found: 80.87; H, 3 90.

7,9-Dimethoxybenzo[3,4]cyclobuta[1,2-*b*]**anthracene-6,11-dione (6c).** Yellow powder, mp 208-210 0 C. IR (KBr) v 1682 cm^{-1. 1}H NMR (CDCl₃) δ 4.0 (6.8 (d, *J* = Hz, 2 H), 6.9)m, 2 H), 7.3 (d, *J* = 8 Hz, 1 H), 7.7 (m, 2 H), 7.8 (d, *J* = 8 Hz, 1 H), 8.2 (m, 1 H), 8.3 (m, 1 H). 13 C NMR (CDCl₃) δ 130.9, 131.0, 131.8, 133.7, 133.8, 134.1, 149.3, 151.1, 153.5, 158.2, 181.8, 182.2. Anal. Calcd for C₂₂H₁₄O₄: C, 85.09; H, 3.57. Found: 85.15; H, 3 66.

6-Methoxynaphthacene-dione (10a). Colorless prisms, mp 283-284 °C. IR (KBr) v 1677 cm⁻¹. ¹H NMR δ 4.21 (s, 3 H), 7.82 (m, 4 H), 8.10 (m, 1 H), 8.33 (m, 2 H), 8.44 (m, 1 H), 8.70 (s, I H).

 13 C NMR δ 63.0, 120.0, 124.7, 125.8, 127.0, 127.5, 129.5, 130.0, 130.3, 130.9, 132.0, 133.5, 133.6, 134.3, 135.9, 126.0, 160.0, 182.2, 183.2. Anal. Calcd for $C_{19}H_{12}O_3$: C, 79.16; H, 4.20. Found: C, 79.31; H, 4.26.

1,3,6-Trimethoxynaphthacene-5,12-dione (10b). Light yellow powder, mp 216-217 °C. IR (KBr) 1667. ¹H NMR (CDCl₃) δ 3.91 (s, 3 H), 4.01 (s, 3 H), 4.12 (s, 3 H), 6.72 (d, *J* = 4.2 Hz, 1 H), 7.50 (d, *J* = 4.1 Hz, 1 H), 7.72 (m, 2 H), 8.13 (m, 1 H), 8.41 (m, 1 H), 8.58 (m, 1 H). ¹³C NMR (CDCl₃) δ 56.0, 56.6, 63.1, 103.1, 104.4, 116.7, 120.0, 124.5, 125.2, 128.9, 130.1, 131.1, 132.5, 136.3, 140.0, 159.2, 162.3, 164.9, 181.2, 182.4. Anal. Cacld for C₂₁H₁₆O₃: C, .72.41; H, 4.63. Found: C, 72.45; H, 4.70.

2-Cyano-3-(2-cynobenzyl)-1-methoxynaphthalene (15). Colorless crystals, mp 142-143 °C. IR (KBr) v 2223 cm⁻¹. ¹H NMR (CDCl₃) δ 4.21 (s, 3 H), 4.51 (s, 2 H), 7.30-7.80 (m, 8 H), 8.21 (8.21 (d, *J* = 8.1 Hz, 1 H). ¹³C NMR (CDCl₃) δ 38.5, 63.0, 101.3, 113.1, 122.8, 124.2, 126.1, 127.0, 127.4, 127.8, 130.0, 130.2, 133.1, 133.2, 136.0, 136.4, 142.5, 162.5. Anal. Calcd for C₂₀H₁₄N₂O: C, 80.52, H, 4.73, N, 9.39. Found: C, 80.55; H, 4.74; N, 9.44.

Acknowledgements

Generous financial support from the Robert Welch Foundation, Houston, Texas is greatly appreciated.

References and Notes

- 1. Kabir, S. M. H.; Hasegawa, M.; Kuwatani, Y.; Yoshida, M.; Matsuyama, H.; Iyoda. M. J. Chem. Soc., Perkins Trans. 1 2001, 159.
- 2. Khanapure, S. P.; Biehl, E. R. Acc. Chem. Res. 1989, 22, 275.
- 3. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. **1985**, 107, 3902.
- 4. SPARTAN version 3.1. Wavefunction, Inc. 18401 Von Karman, #370, Irvine, CA 92715 USA. ©1993.
- 5. Roberts, J. D.; Vaughan, C. W.; Carlsmith, L. A.; Semenov, D. J. Org. Chem. 1998, 63, 2451.
- 6. Muathen, H. A. J. Org. Chem. 1992, 57, 2740
- 7. Cava, M. P.; Mitchel, M. J. *Cyclobutadiene and Related Compounds*; Academic: New York, **1967**.
- 8. Han, W.; Lu, Y.; Zhao, H.; Dutt, M.; Biehl, E. R. Synthesis 1996, 59.
- 9. Pansegrau, P. D.; Rieker, W. F.; Meyers, A. I. J. Am. Chem. Soc. 1988, 110, 7148.
- 10. Smithwick, Jr, E. L.; Shuman, R. T. Synthesis 1974, 582.